One-cell mouse embryos from KM strain and B6C3F1 strain were cultured in M16 medium, in which 2-cell block generally occurs. Embryos of KM strain exhibited 2-cell block, whereas B6C3F1 embryos, which are regarded as a nonblocking strain, proceeded to the 4-cell stage in our culture condition. It is often assumed that the block of early development is due to the failure of zygotic gene activation (ZGA) in cultured embryos. In this study we examined protein synthesis patterns by two-dimensional gel electrophoresis of [ 35 S] methionine radiolabeled 2-cell embryos. Embryos from the blocking strain and the nonblocking strain were compared in their development both in vitro and in vivo. The detection of TRC expression, a marker of ZGA, at 42 h post hCG in KM embryos developed in vitro suggested that ZGA was also initiated even in the 2-cell arrested embryos. Nevertheless, a significant delay of ZGA was observed in KM strain as compared with normally developed B6C3F1 embryos. At the very beginning of major ZGA as early as 36 h post hCG, TRC has already been expressed in B6C3F1 embryos developed in vitro and KM embryos developed in vivo. But for 2-cell blocked KM embryos, TRC was still not detectable even at 38 h post hCG. These evidences suggest that 2-cell-blocked embryos do initiate ZGA, and that 2-cell block phenomenon is due not to the disability in initiating ZGA, but to a delay of ZGA.
A new strategy for increasing the low-temperature toughness of structural materials is in urgent need for overcoming the general rheotropic brittleness in coarse-grain state. Here, a unique phenomenon was observed that ultra-fine-grained (UFG) SiCp/ZL108 composites after severe plastic deformation (SPD) exhibit higher impact toughness at temperatures slightly lower than room temperature. The enhanced impact toughness is attributed to the simultaneous increase of strength and ductility of UFG materials at lower temperatures, related to grains or grain fragment boundary modification. This result demonstrates the advantage of fabricating UFG materials by SPD method and spurs the interest to use UFG materials in low-temperature conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.