Pull Request (PR) is a major contributor to external developers of open-source projects in GitHub. PR reviewing is an important part of open-source software developments to ensure the quality of project. Recommending suitable candidates of reviewer to the new PRs will make the PR reviewing more efficient. However, there is not a mechanism of automatic reviewer recommendation for PR in GitHub. In this paper, we propose an automatic core-reviewer recommendation approach, which combines PR topic model with collaborators in the social network. First PR topics will be extracted from PRs by the latent Dirichlet allocation, and then the collaborator-PR network will be constructed with the connection between collaborators and PRs, and the influence of each collaborator will be calculated via the improved PageRank algorithm which combines with HITS. Finally, the relationship between topics and collaborators will also be built by the history of PR reviewing. When a new PR presents, a collaborator will be chosen as a core reviewer according to the influence of collaborators and the relationship between the new PR and collaborators. The experiment results show in the matching score calculation processing, the influence of collaborators shows higher than that with the expert, and the recommendation precision is better than 70%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.