Background Oral cancer (OC) is a common and dangerous malignant tumor with a low survival rate. However, the micro level mechanism has not been explained in detail. Methods Gene and miRNA expression micro array data were extracted from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) and miRNAs (DE miRNAs) were identified by R software. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of genes and genomes (KEGG) pathway analysis were used to assess the potential molecular mechanisms of DEGs. Cytoscape software was utilized to construct protein–protein interaction (PPI) network and miRNA-gene network. Central genes were screened out with the participation of gene degree, molecular complex detection (MCODE) plugin, and miRNA-gene network. Then, the identified genes were checked by The Cancer Genome Atlas (TCGA) gene expression profile, Kaplan-Meier data, Oncomine, and the Human Protein Atlas database. Receiver operating characteristic (ROC) curve was drawn to predict the diagnostic efficiency of crucial gene level in normal and tumor tissues. Univariate and multivariate Cox regression were used to analyze the effect of dominant genes and clinical characteristics on the overall survival rate of OC patients. Results Gene expression data of gene expression profiling chip(GSE9844, GSE30784, and GSE74530) were obtained from GEO database, including 199 tumor and 63 non-tumor samples. We identified 298 gene mutations, including 200 upregulated and 98 downregulated genes. GO functional annotation analysis showed that DEGs were enriched in extracellular structure and extracellular matrix containing collagen. In addition, KEGG pathway enrichment analysis demonstrated that the DEGs were significantly enriched in IL-17 signaling pathway and PI3K-Akt signaling pathway. Then, we detected three most relevant modules in PPI network. Central genes (CXCL8, DDX60, EIF2AK2, GBP1, IFI44, IFI44L, IFIT1, IL6, MMP9,CXCL1, CCL20, RSAD2, and RTP4) were screened out with the participation of MCODE plugin, gene degree, and miRNA-gene network. TCGA gene expression profile and Kaplan-Meier analysis showed that high expression of CXCL8, DDX60, IL6, and RTP4 was associated with poor prognosis in OC patients, while patients with high expression of IFI44L and RSAD2 had a better prognosis. The elevated expression of CXCL8, DDX60, IFI44L, RSAD2, and RTP44 in OC was verified by using Oncomine database. ROC curve showed that the mRNA levels of these five genes had a helpful diagnostic effect on tumor tissue. The Human Protein Atlas database showed that the protein expressions of DDX60, IFI44L, RSAD2, and RTP44 in tumor tissues were higher than those in normal tissues. Finally, univariate and multivariate Cox regression showed that DDX60, IFI44L, RSAD2, and RTP44 were independent prognostic indicators of OC. Conclusion This study revealed the potential biomarkers and relevant pathways of OC from publicly available GEO database, and provided a theoretical basis for elucidating the diagnosis, treatment, and prognosis of OC.
Background Lung adenocarcinoma is the leading cause of cancer death worldwide. Recently, ubiquitin C-terminal hydrolase L1 (UCHL1) has been demonstrated to be highly expressed in many tumors and plays the role of an oncogene. However, the functional mechanism of UCHL1 is unclear in lung adenocarcinoma progression. Methods We analyzed the differential expression of the UCHL1 gene in lung adenocarcinoma and normal lung tissues, and the correlation between the UCHL1 gene and prognosis was also analyzed by the bioinformatics database TCGA. Meanwhile, we detected and analyzed the expression of UCHL1 and Ki-67 protein in a tissue microarray (TMA) containing 150 patients with lung adenocarcinoma by immunohistochemistry (IHC) and clinicopathological characteristics by TCGA database. In vitro experiments, we knocked down the UCHL1 gene of A549 cells and detected the changes in cell migration, invasion, and apoptosis. At the same time, we analyzed the effect of UCHL1 on anti-tumor drug sensitivity of lung adenocarcinoma by a bioinformatics database. In terms of the detection rate of lung adenocarcinoma indicators, we analyzed the impact of UCHL1 combined with common clinical indicators on the detection rate of lung adenocarcinoma through a bioinformatics database. Results In this study, the analysis of UCHL1 protein expression in lung adenocarcinoma proved that obviously higher UCHL1 protein level was discovered in lung adenocarcinoma tissues. The expression of UCHL1 was closely related to poor clinical outcomes. Interestingly, a significantly positive correlation between the expression of UCHL1 and Ki-67-indicated UCHL1 was associated with tumor migration and invasion. Through executing loss of function tests, we affirmed that silencing of UCHL1 expression significantly inhibited migration and invasion of lung adenocarcinoma cells in vitro. Furthermore, lung adenocarcinoma cells with silenced UCHL1 showed a higher probability of apoptosis. In terms of the detection rate of lung adenocarcinoma indicators, we discovered UCHL1 could improve the detection rate of clinical lung adenocarcinoma and affect drug sensitivity. Conclusion In lung adenocarcinoma, UCHL1 promotes tumor migration, invasion, and metastasis by inhibiting apoptosis and has an important impact on the clinical drug treatment of lung adenocarcinoma. In addition, UCHL1 can improve the detection rate of clinical lung adenocarcinoma. Above all, UCHL1 may be a new marker for the diagnosis of lung adenocarcinoma and provide a new target for the treatment of clinical diseases.
Lung cancer is the world's most common malignancies and ranks first among all cancer-related deaths. Lung adenocarcinoma (LUAD) is the most frequent histological type in lung cancer. Its pathogenesis has not yet been fully elucidated, so it is of great significance to explore related genes for elucidating the molecular mechanism involved in occurrence and development of LUAD. To explore the crucial genes associated with LUAD development and progression, microarray datasets GSE7670, GSE10072, and GSE31547 were acquired from the Gene Expression Omnibus (GEO) database. R language Limma package was adopted to screen the differentially expressed genes (DEGs). The clusterProfiler package was used for enrichment analysis and annotation of the Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathways for DEGs. The Search Tool for the Retrieval of Interacting Genes database (STRING) was used to construct the protein interaction network for DEGs, while Cytoscape was adopted to visualize it. The functional module was screened with Cytoscape's MCODE (The Molecular Complex Detection) plugin. The crucial genes associated with LUAD were identified by cytoHubba plugin. Kaplan–Meier plotter online tool was used to perform survival analysis of the hub gene. Three hundred twenty-one DEGs in total were screened, of which 105 were upregulated and 216 were downregulated. It was found that some GO terms and pathways (e.g., collagen trimer, extracellular structure organization, heparin binding, complement and coagulation cascades, malaria, protein digestion and absorption, and PPAR signaling pathway) were considerably enriched in DEGs. UBE2C, TOP2A, RRM2, CDC20, CCNB2, KIAA0101, BUB1B, TPX2, PRC1, and CDK1 were identified as crucial genes. Survival analysis showed that the overexpression of UBE2C, TOP2A, RRM2, CDC20, CCNB2, KIAA0101, BUB1B, TPX2, and PRC1 significantly reduced the overall survival of LUAD patients. One of the crucial genes: UBE2C was validated by immunohistochemistry to be upregulated in LUAD tissues. This study screened out potential biomarkers of LUAD, providing a theoretical basis for elucidating the pathogenesis and evaluating the prognosis of LUAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.