As graph data is prevalent for an increasing number of Internet applications, continuously monitoring structural patterns in dynamic graphs in order to generate real-time alerts and trigger prompt actions becomes critical for many applications. In this paper, we present a new system GraphS to efficiently detect constrained cycles in a dynamic graph, which is changing constantly, and return the satisfying cycles in real-time. A hot point based index is built and efficiently maintained for each query so as to greatly speed-up query time and achieve high system throughput. The GraphS system is developed at Alibaba to actively monitor various online fraudulent activities based on cycle detection. For a dynamic graph with hundreds of millions of edges and vertices, the system is capable to cope with a peak rate of tens of thousands of edge updates per second and find all the cycles with predefined constraints with a 99.9% latency of 20 milliseconds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.