Dealing with the water molecule on the surface of LiNi0.6Co0.2Mn0.2O2 (NCM) cathode and hydrogen fluoride in the electrolyte is one of the most difficult challenges in Li-ion battery research. In this paper, the surface polymerization of tetraethyl orthosilicate (TEOS) on NCM to generate ethoxy-functional polysiloxane (EPS) wrapped NCM (E-NCM) cathode under mild conditions and without any additions is utilized to solve this intractable problem. The differential scanning calorimetry, transmission electron microscopy, and X-ray photoelectron spectroscopy results show that the formed amorphous coating can provide a protective shell to improve the NCM thermal stability, suppress the thickening of the solid electrolyte interphase (SEI) layer, and scavenge HF in the electrolyte. The E-NCM composite with 2 mol % EPS delivers a high discharge capacity retention of 84.9% after 100 cycles at a 1 C discharge rate in the 2.8-4.3 V potential range at 55 °C. Moreover, electrochemical impedance spectroscopy measurements reveal that the EPS coating could alleviate the impedance rise during cycling especially at an elevated temperature. Therefore, the fabricated E-NCM cathode with long-term cycling and thermal stability is a promising candidate for use in a high-energy Li-ion battery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.