Background and Aims To investigate the association between serum albumin levels within 24 hrs of patient admission and the development of persistent organ failure in acute pancreatitis. Methods A total of 700 patients with acute pancreatitis were enrolled. Multivariate logistic regression and subgroup analysis determined whether decreased albumin was independently associated with persistent organ failure and mortality. The diagnostic performance of serum albumin was evaluated by the area under Receiver Operating Characteristic (ROC) curves. Results As levels of serum albumin decrease, the risk of persistent organ failure significantly increases (Ptrend < 0.001). The incidence of organ failure was 3.5%, 10.6%, and 41.6% in patients with normal albumin and mild and severe hypoalbuminaemia, respectively. Decreased albumin levels were also proportionally associated with prolonged hospital stay (Ptrend < 0.001) and the risk of death (Ptrend < 0.001). Multivariate analysis suggested that biliary etiology, chronic concomitant diseases, hematocrit, blood urea nitrogen, and the serum albumin level were independently associated with persistent organ failure. Blood urea nitrogen and the serum albumin level were also independently associated with mortality. The area under ROC curves of albumin for predicting organ failure and mortality were 0.78 and 0.87, respectively. Conclusion A low serum albumin is independently associated with an increased risk of developing of persistent organ failure and death in acute pancreatitis. It may also be useful for the prediction of the severity of acute pancreatitis.
Activation of hepatic stellate cells (HSCs), a pivotal event in liver fibrosis, is considered as an epithelial–mesenchymal transition (EMT) process. Deregulation of long noncoding RNAs (lncRNAs) has been reported to be involved in a series of human diseases. LncRNA-maternally expressed gene 3 (MEG3) functions as a tumor suppressor in cancers and has been shown to play a vital role in EMT process. However, the biological role of MEG3 in liver fibrosis is largely unknown. In this study, MEG3 was reduced in vivo and in vitro during liver fibrosis. Restoring of MEG3 expression led to the suppression of liver fibrosis, with a reduction in α-SMA and type I collagen. Notably, MEG3 overexpression inhibited HSC activation through EMT, associated with an increase in epithelial markers and a reduction in mesenchymal markers. Further studies showed that Hedgehog (Hh) pathway-mediated EMT process was involved in the effects of MEG3 on HSC activation. Smoothened (SMO) is a member of Hh pathway. Using bioinformatic analysis, an interaction between MEG3 and SMO protein was predicted. This interaction was confirmed by the results of RNA immunoprecipitation and deletion-mapping analysis. Furthermore, MEG3 was confirmed as a target of microRNA-212 (miR-212). miR-212 was partly responsible for the effects of MEG3 on EMT process. Interestingly, MEG3 was also reduced in chronic hepatitis B (CHB) patients with liver fibrosis when compared with healthy controls. MEG3 negatively correlated with fibrosis stage in CHB patients. In conclusion, we demonstrate that MEG3 inhibits Hh-mediated EMT process in liver fibrosis via SMO protein and miR-212.
C-Jun N-terminal kinase (JNK) is a pivotal MAPK (mitogen-activated protein kinase), which activated by ischemia brain injury and plays a fairly crucial function in cerebral ischemic injury. Emerging studies demonstrated that JNK-IN-8 (a JNK inhibitor with high specificity) regulates traumatic brain injury through controlling neuronal apoptosis and inflammation. However, the function of JNK-IN-8 in ischemic stroke and the mechanisms underlying of JNK-IN-8 about neuroprotection are not well understood. In this work, male rats were treated with JNK-IN-8 after transient middle cerebral artery occlusion, and then the modified improved neurological function score (mNSS), the foot-fault test (FFT), interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) levels were assessed. We found that JNK-IN-8-treated rats with MCAO exerted an observable melioration in space learning as tested by the improved mNSS, and showed sensorimotor functional recovery as measured by the FFT. JNK-IN-8 also played anti-inflammatory roles as indicated through decreased activation of microglia and decreased IL-6, IL-1β, and TNF-α expression. Furthermore, JNK-IN-8 suppressed the activation of JNK and nuclear factor-κB (NF-κB) signaling as indicated by the decreased level of phosphorylated-JNK and p65. All data demonstrate that JNK-IN-8 inhibits neuroinflammation and improved neurological function by inhibiting JNK/NF-κB and is a promising agent for the prevention of ischemic brain injury. K E Y W O R D S ischemia brain injury, JNK, JNK-IN-8
Background and Aims Early prediction of disease severity of acute pancreatitis (AP) would be helpful for triaging patients to the appropriate level of care and intervention. The aim of the study was to develop a model able to predict Severe Acute Pancreatitis (SAP). Methods A total of 647 patients with AP were enrolled. The demographic data, hematocrit, High-Density Lipoprotein Cholesterol (HDL-C) determinant at time of admission, Blood Urea Nitrogen (BUN), and serum creatinine (Scr) determinant at time of admission and 24 hrs after hospitalization were collected and analyzed statistically. Results Multivariate logistic regression indicated that HDL-C at admission and BUN and Scr at 24 hours (hrs) were independently associated with SAP. A logistic regression function (LR model) was developed to predict SAP as follows: −2.25–0.06 HDL-C (mg/dl) at admission + 0.06 BUN (mg/dl) at 24 hours + 0.66 Scr (mg/dl) at 24 hours. The optimism-corrected c-index for LR model was 0.832 after bootstrap validation. The area under the receiver operating characteristic curve for LR model for the prediction of SAP was 0.84. Conclusions The LR model consists of HDL-C at admission and BUN and Scr at 24 hours, representing an additional tool to stratify patients at risk of SAP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.