Buildings along riverbanks are likely to be affected by rising water levels, therefore the acquisition of accurate building information has great importance not only for riverbank environmental protection but also for dealing with emergency cases like flooding. UAV-based photographs are flexible and cloud-free compared to satellite images and can provide very high-resolution images up to centimeter level, while there exist great challenges in quickly and accurately detecting and extracting building from UAV images because there are usually too many details and distortions on UAV images. In this paper, a deep learning (DL)-based approach is proposed for more accurately extracting building information, in which the network architecture, SegNet, is used in the semantic segmentation after the network training on a completely labeled UAV image dataset covering multi-dimension urban settlement appearances along a riverbank area in Chongqing. The experiment results show that an excellent performance has been obtained in the detection of buildings from untrained locations with an average overall accuracy more than 90%. To verify the generality and advantage of the proposed method, the procedure is further evaluated by training and testing with another two open standard datasets which have a variety of building patterns and styles, and the final overall accuracies of building extraction are more than 93% and 95%, respectively.
Data fusion is usually an important process in multi-sensor remotely sensed imagery integration environments with the aim of enriching features lacking in the sensors involved in the fusion process. This technique has attracted much interest in many researches especially in the field of agriculture. On the other hand, deep learning (DL) based semantic segmentation shows high performance in remote sensing classification, and it requires large datasets in a supervised learning way. In the paper, a method of fusing multi-source remote sensing images with convolution neural networks (CNN) for semantic segmentation is proposed and applied to identify crops. Venezuelan Remote Sensing Satellite-2 (VRSS-2) and the high-resolution of Google Earth (GE) imageries have been used and more than 1000 sample sets have been collected for supervised learning process. The experiment results show that the crops extraction with an average overall accuracy more than 93% has been obtained, which demonstrates that data fusion combined with DL is highly feasible to crops extraction from satellite images and GE imagery, and it shows that deep learning techniques can serve as an invaluable tools for larger remote sensing data fusion frameworks, specifically for the applications in precision farming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.