Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to ten qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is probed by quantum state tomography, with a fidelity of 0.668±0.025. Our results demonstrate the largest entanglement created so far in solid-state architectures and pave the way to large-scale quantum computation.
We report on deterministic generation of 18-qubit genuinely entangled Greenberger-Horne-Zeilinger (GHZ) state and multi-component atomic Schrödinger cat states of up to 20 qubits on a quantum processor, which features 20 superconducting qubits interconnected by a bus resonator. By engineering a one-axis twisting Hamiltonian enabled by the resonator-mediated interactions, the system of qubits initialized coherently evolves to an over-squeezed, non-Gaussian regime, where atomic Schrödinger cat states, i.e., superpositions of atomic coherent states including GHZ state, appear at specific time intervals in excellent agreement with theory. With high controllability, we are able to take snapshots of the dynamics by plotting quasidistribution Q-functions of the 20qubit atomic cat states, and globally characterize the 18-qubit GHZ state which yields a fidelity of 0.525 ± 0.005 confirming genuine eighteen-partite entanglement. Our results demonstrate the largest entanglement controllably created so far in solid state architectures, and the process of generating and detecting multipartite entanglement may promise applications in practical quantum metrology, quantum information processing and quantum computation.
The law of statistical physics dictates that generic closed quantum many-body systems initialized in nonequilibrium will thermalize under their own dynamics. However, the emergence of manybody localization (MBL) owing to the interplay between interaction and disorder, which is in stark contrast to Anderson localization that only addresses noninteracting particles in the presence of disorder, greatly challenges this concept because it prevents the systems from evolving to the ergodic thermalized state. One critical evidence of MBL is the long-time logarithmic growth of entanglement entropy, and a direct observation of it is still elusive due to the experimental challenges in multiqubit single-shot measurement and quantum state tomography. Here we present an experiment of fully emulating the MBL dynamics with a 10-qubit superconducting quantum processor, which represents a spin-1/2 XY model featuring programmable disorder and long-range spin-spin interactions. We provide essential signatures of MBL, such as the imbalance due to the initial nonequilibrium, the violation of eigenstate thermalization hypothesis, and, more importantly, the direct evidence of the long-time logarithmic growth of entanglement entropy. Our results lay solid foundations for precisely simulating the intriguing physics of quantum many-body systems on the platform of largescale multiqubit superconducting quantum processors.
Lung cancer is the most common malignancy and exhibits significant morbidity and mortality worldwide. Among all lung cancer subtypes, non-small-cell lung cancer (NSCLC) accounts for the majority of all lung cancer cases. Although there have been intensive investigations on the underlying mechanism of NSCLC development and progression, the exact molecular basis is not well understood. Further insights on important molecular regulators of lung cancer are needed for development of novel therapeutics. The heat shock protein (HSP) family is a group of molecular chaperones that assist in protein folding, modification, and transportation. Different HSPs are essential for tumor cell survival by binding diverse client proteins and regulating homeostasis. In the current study, we sought to characterize HSP70 and HSP90 as potent regulators of NSCLC growth. Our results indicate that differential expression of HSP70 is associated with the malignant phenotype of NSCLC cell lines and plays an important regulatory role in NSCLC cell proliferation. Moreover, a specific inhibitor of HSP70, VER-155008 significantly inhibits NSCLC proliferation and cell cycle progression. We showed that this effect is largely abolished by HSP70 overexpression, indicating that the inhibitory effect of VER-155008 on cell growth is specifically through HSP70 inhibition. In addition, 17-AAD, an inhibitor of HSP90, exerts a potent synergistic effect on NSCLC proliferation with VER-155008. We also observed that inhibition of HSP70 by VER-155008 can sensitize A549 cells to ionizing radiation. These data provide proof-of-principle that VER-155008 can be a good candidate for NSCLC treatment and HSP machinery is a good target for developing NSCLC therapeutics.
Nonequilibrium quantum many-body systems, which are difficult to study via classical computation, have attracted wide interest. Quantum simulation can provide insights into these problems. Here, using a programmable quantum simulator with 16 all-to-all connected superconducting qubits, we investigate the dynamical phase transition in the Lipkin-Meshkov-Glick model with a quenched transverse field. Clear signatures of dynamical phase transitions, merging different concepts of dynamical criticality, are observed by measuring the nonequilibrium order parameter, nonlocal correlations, and the Loschmidt echo. Moreover, near the dynamical critical point, we obtain a spin squeezing of −7.0 ± 0.8 dB, showing multipartite entanglement, useful for measurements with precision fivefold beyond the standard quantum limit. On the basis of the capability of entangling qubits simultaneously and the accurate single-shot readout of multiqubit states, this superconducting quantum simulator can be used to study other problems in nonequilibrium quantum many-body systems, such as thermalization, many-body localization, and emergent phenomena in periodically driven systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.