Autophagy is a conserved cellular recycling and trafficking pathway in eukaryotic cells and has been reported to be important in the virulence of a number of microbial pathogens. Here, we report genome-wide identification and characterization of autophagy-related genes (ATGs) in the wheat pathogenic fungus Fusarium graminearum. We identified twenty-eight genes associated with the regulation and operation of autophagy in F. graminearum. Using targeted gene deletion, we generated a set of 28 isogenic mutants. Autophagy mutants were classified into two groups by differences in their growth patterns. Radial growth of 18 Group 1 ATG mutants was significantly reduced compared to the wild-type strain PH-1, while 10 Group 2 mutants grew normally. Loss of any of the ATG genes, except FgATG17, prevented the fungus from causing Fusarium head blight disease. Moreover, subsets of autophagy genes were necessary for asexual/sexual differentiation and deoxynivalenol (DON) production, respectively. FgATG1 and FgATG5 were investigated in detail and showed severe defects in autophagy. Taken together, we conclude that autophagy plays a critical role in growth, asexual/sexual sporulation, deoxynivalenol production and virulence in F. graminearum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.