Decompression sickness (DCS) is a systemic disorder, assumed due to gas bubbles, but additional factors are likely to play a role. Circulating microparticles (MPs)--vesicular structures with diameters of 0.1-1.0 μm--have been implicated, but data in human divers have been lacking. We hypothesized that the number of blood-borne, Annexin V-positive MPs and neutrophil activation, assessed as surface MPO staining, would differ between self-contained underwater breathing-apparatus divers suffering from DCS vs. asymptomatic divers. Blood was analyzed from 280 divers who had been exposed to maximum depths from 7 to 105 meters; 185 were control/asymptomatic divers, and 90 were diagnosed with DCS. Elevations of MPs and neutrophil activation occurred in all divers but normalized within 24 h in those who were asymptomatic. MPs, bearing the following proteins: CD66b, CD41, CD31, CD142, CD235, and von Willebrand factor, were between 2.4- and 11.7-fold higher in blood from divers with DCS vs. asymptomatic divers, matched for time of sample acquisition, maximum diving depth, and breathing gas. Multiple logistic regression analysis documented significant associations (P < 0.001) between DCS and MPs and for neutrophil MPO staining. Effect estimates were not altered by gender, body mass index, use of nonsteroidal anti-inflammatory agents, or emergency oxygen treatment and were modestly influenced by divers' age, choice of breathing gas during diving, maximum diving depth, and whether repetitive diving had been performed. There were no significant associations between DCS and number of MPs without surface proteins listed above. We conclude that MP production and neutrophil activation exhibit strong associations with DCS.
PURPOSE: Magnetic resonance–guided radiation therapy (MRgRT) has recently become commercially available, offering the opportunity to accurately image and target moving tumors as compared with computed tomography-guided radiation therapy (CTgRT) systems. However, the costs of delivering care with these 2 modalities remain poorly described. With localized unresectable hepatocellular carcinoma as an example, we were able to use time-driven activity-based costing to determine the cost of treatment on linear accelerators with CTgRT compared with MRgRT. MATERIALS AND METHODS: Process maps, informed via interviews with departmental personnel, were created for each phase of the care cycle. Stereotactic body radiation therapy was delivered at 50 Gy in 5 fractions, either with CTgRT using fiducial placement, deep inspiration breath-hold (DIBH) with real-time position management, and volumetric-modulated arc therapy, or with MRgRT using real-time tumor gating, DIBH, and static-gantry intensity-modulated radiation therapy. RESULTS: Direct clinical costs were $7,306 for CTgRT and $8,622 for MRgRT comprising personnel costs ($3,752 v $3,603), space and equipment costs ($2,912 v $4,769), and materials costs ($642 v $250). Increased MRgRT costs may be mitigated by forgoing CT simulation ($322 saved) or shortening treatment to 3 fractions ($1,815 saved). Conversely, adaptive treatment with MRgRT would result in an increase in cost of $529 per adaptive treatment. CONCLUSION: MRgRT offers real-time image guidance, avoidance of fiducial placement, and ability to use adaptive treatments; however, it is 18% more expensive than CTgRT under baseline assumptions. Future studies that elucidate the magnitude of potential clinical benefits of MRgRT are warranted to clarify the value of using this technology.
Background: There is an association between higher hospital and urologist case volume and improved survival outcomes for patients with bladder cancer. Less data on facility volume and outcomes exists following trimodality bladder preservation with TURBT followed by definitive chemoradiation (CRT). Materials and Methods: The National Cancer Database was queried for patients from 2004-2013 with urothelial bladder cancer (cT2-4aN0M0) receiving definitive CRT after TURBT. We compared OS between high-and low-bladder preservation case volume (BPCV) centers using Cox proportional hazard models. BPCV was dichotomized into high versus low volume at the 70th percentile level (i.e. high volume defined as top 30th percentile of cases and low volume defined as bottom 70th percentile of cases). Propensity matching was performed to match high-and low-volume centers. Results: A total of 666 treatment facilities treating 1,635 patients with bladder preservation were identified with a median follow-up of 26 months (range, 2-136 months). A 70th percentile cutoff identified 497 patients that received treatment at 64 high-volume facilities. Median OS of patients treated at high BPCV centers was 37.0 months (95% CI, 27.3-46.7) versus 32.3 months (95% CI, 27.9-33.6) for patients treated at low BPCV centers (P = 0.004). High BPCV facilities were independently associated with a decreased hazard of death (HR, 0.86, 95% CI, 0.75-0.98; P = 0.031). In the propensity score matched cohort, median OS of patients treated at high BPCV was 36.1 months (95% CI, 26.5-45.8) versus 28.1 months (95% CI, 23.9-32.3) for patients treated at a low BPCV facility (P = 0.016). Conclusions: In this observational cohort, treatment at a high BPCV facility was associated with improved OS. Causal factors for this finding may include superior bladder specific clinician expertise, technology, and multidisciplinary-care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.