Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Review criteriaWe searched PubMed for articles in all year ranges with multiple combinations of search terms including, "post-haemorrhagic hydrocephalus", "post-infectious hydrocephalus", "worldwide", "epidemiology", "ETV/CPC", "VP Shunt", "NKCC1", "SPAK", "Toll-like receptors" "inflammation", "obstruction", "impaired reabsorption", "CSF hypersecretion", "cerebrospinal fluid". There were no language exclusions and articles chosen were based on relevance to topics covered in this Review. Peer review information Nature Reviews Neurology thanks [Referee# 1 name], [Referee#2 name] and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
OBJECTIVEIntracranial epidermoid tumors are slow-growing, histologically benign tumors of epithelial cellular origin that can be symptomatic because of their size and mass effect. Neurosurgical resection, while the treatment of choice, can be quite challenging due to locations where these lesions commonly occur and their association with critical neurovascular structures. As such, subtotal resection (STR) rather than gross-total resection (GTR) can often be performed, rendering residual and recurrent tumor potentially problematic. The authors present a case of a 28-year-old man who underwent STR followed by aggressive repeat resection for regrowth, and they report the results of the largest meta-analysis to date of epidermoid tumors to compare recurrence rates for STR and GTR.METHODSThe authors conducted a systemic review of PubMed, Web of Science, and the Cochrane Collaboration following the PRISMA guidelines. They then conducted a proportional meta-analysis to compare the pooled recurrence rates between STR and GTR in the included studies. The authors developed fixed- and mixed-effect models to estimate the pooled proportions of recurrence among patients undergoing STR or GTR. They also investigated the relationship between recurrence rate and follow-up time in the previous studies using linear regression and natural cubic spline models.RESULTSOverall, 27 studies with 691 patients met the inclusion criteria; of these, 293 (42%) underwent STR and 398 (58%) received GTR. The average recurrence rate for all procedures was 11%. The proportional meta-analysis showed that the pooled recurrence rate after STR (21%) was 7 times greater than the rate after GTR (3%). The average recurrence rate for studies with longer follow-up durations (≥ 4.4 years) (17.4%) was significantly higher than the average recurrence rate for studies with shorter follow-up durations (< 4.4 years) (5.7%). The cutoff point of 4.4 years was selected based on the significant relationship between the recurrence rate of both STR and GTR and follow-up durations in the included studies (p = 0.008).CONCLUSIONSSTR is associated with a significantly higher rate of epidermoid tumor recurrence compared to GTR. Attempts at GTR should be made during the initial surgery with efforts to optimize success. Surgical expertise, as well as the use of adjuncts, such as intraoperative MRI and neuromonitoring, may increase the likelihood of completing a safe GTR and decreasing the long-term risk of recurrence. The most common surgical complications were transient cranial nerve palsies, occurring equally in STR and GTR cases when reported. In all postoperative epidermoid tumor cases, but particularly following STR, close follow-up with serial MRI, even years after surgery, is recommended.
Epilepsy is a common neurological disorder characterized by recurrent and unprovoked seizures thought to arise from impaired balance between neuronal excitation and inhibition. Our understanding of the neurophysiological mechanisms that render the brain epileptogenic remains incomplete, reflected by the lack of satisfactory treatments that can effectively prevent epileptic seizures without significant drug-related adverse effects. Type 2 K+-Cl− cotransporter (KCC2), encoded by SLC12A5, is important for chloride homeostasis and neuronal excitability. KCC2 dysfunction attenuates Cl− extrusion and impairs GABAergic inhibition, and can lead to neuronal hyperexcitability. Converging lines of evidence from human genetics have secured the link between KCC2 dysfunction and the development of epilepsy. Here, we review KCC2 mutations in human epilepsy and discuss potential therapeutic strategies based on the functional impact of these mutations. We suggest that a strategy of augmenting KCC2 activity by antagonizing its critical inhibitory phosphorylation sites may be a particularly efficacious method of facilitating Cl− extrusion and restoring GABA inhibition to treat medication-refractory epilepsy and other seizure disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.