Piezoelectric-driven stick slip actuators have been drawn more and more attention in the nanopositioning application due to the high accuracy and theoretical unlimited displacement. However, the hysteresis of piezoelectric actuator (PEA) and the nonlinear friction force between the endeffector and the stage make control of piezoelectric-driven stick slip actuator challenge. This paper presents the development of an autoregressive exogenous (ARX)-based proportional-integralderive (PID)-sliding mode control (SMC) for the velocity tracking control of the piezoelectric-driven stick slip actuator. Stability is guaranteed by rigorously choosing the appropriate PID parameters and the zero steady state error is achieved. To verify the effectiveness of the proposed method, experiments were carried out on a commercially-available piezoelectric-driven stick slip actuator. The tracking errors were compared with the traditional PID controller, illustrating that in spite of existing of modeling error, the ARX-based PID-SMC is able to better improve the velocity tracking performance of piezoelectric-driven stick slip actuator, compared with the traditional PID controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.