Although different kinds of foundations have been investigated against an earthquake faulting, the interaction between pile group and dip-slip fault has not yet been fully understood. This letter investigates the interaction between piled raft and normal faulting by means of centrifuge and numerical modelling. In centrifuge test, a piled raft was simulated with a half model for a better observation of fault rupture path under the raft. The loading transfer mechanism was further examined using a three-dimensional finite difference software (FLAC3D). The measured and computed results showed that the piled raft displaced and tilted linearly with the magnitude of faulting. The fault rupture bifurcated into two and diverted towards both edges of the raft. Two types of loading transfer mechanism were identified during faulting. Working load transferred from the raft to the underneath piles, and also from the piles on the side of the hanging wall to the piles on the footwall side, resulting in compression failure of the piles on the footwall side.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.