Two thin film deposition routes were studied for the growth of high quality single crystalline Ru (0001) epitaxial films on c-Al2O3 substrates using RF-magnetron sputtering. Such films are very important as buffer layers for the deposition of epitaxial non-collinear antiferromagnetic Mn3X films. The first route involved depositing Ru at 700 °C, leading to a smooth 30 nm thick film. Although, high resolution X-ray diffraction (HRXRD) revealed twinned Ru film orientations, the in-situ post-annealing eliminated one orientation, leaving the film orientation aligned with the substrate, with no in-plane lattice rotation and a large lattice mismatch (13.6%). The second route involved deposition of Ru at room temperature followed by in-situ post-annealing at 700 °C. Transmission electron microscopy confirmed a very high quality of these films, free of crystal twinning, and a 30° in-plane lattice rotation relative to the substrate, resulting in a small in-plane lattice mismatch of -1.6%. X-ray reflectivity demonstrated smooth surfaces for films down to 7 nm thickness. 30 nm thick high quality single-crystalline Mn3Ga and Mn3Sn films were grown on top of the Ru buffer deposited using the second route as a first step to realize Mn3X films for antiferromagnetic spintronics applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.