Chronic cluster headache remains a debilitating and poorly controlled syndrome. Although various surgical treatments have had limited success, microvascular decompression of the trigeminal nerve with section of the nervus intermedius compares very favorably to other destructive techniques without the accompanying neurologic deficits. It is, therefore, our recommendation as the first-line operative treatment of chronic cluster headache.
The proposed analysis considers aspects of both statistical and biological validation of the glycolysis effect on brain gliomas, at both genomic and metabolic level. In particular, two independent datasets are analyzed in parallel, one engaging genomic (Microarray Expression) data and the other metabolomic (Magnetic Resonance Spectroscopy Imaging) data. The aim of this study is twofold. First to show that, apart from the already studied genes (markers), other genes such as those involved in the human cell glycolysis significantly contribute in gliomas discrimination. Second, to demonstrate how the glycolysis process can open new ways towards the design of patient-specific therapeutic protocols. The results of our analysis demonstrate that the combination of genes participating in the glycolytic process (ALDOA, ALDOC, ENO2, GAPDH, HK2, LDHA, LDHB, MDH1, PDHB, PFKM, PGI, PGK1, PGM1 and PKLR) with the already known tumor suppressors (PTEN, Rb, TP53), oncogenes (CDK4, EGFR, PDGF) and HIF-1, enhance the discrimination of low versus high-grade gliomas providing high prediction ability in a cross-validated framework. Following these results and supported by the biological effect of glycolytic genes on cancer cells, we address the study of glycolysis for the development of new treatment protocols.
BackgroundGliomas are the most common types of brain cancer, well known for their aggressive proliferation and the invasive behavior leading to a high mortality rate. Several mathematical models have been developed for identifying the interactions between glioma cells and tissue microenvironment, which play an important role in the mechanism of the tumor formation and progression.MethodsBuilding and expanding on existing approaches, this paper develops a continuous three-dimensional model of avascular glioma spatio-temporal evolution. The proposed spherical model incorporates the interactions between the populations of four different glioma cell phenotypes (proliferative, hypoxic, hypoglychemic and necrotic) and their tissue microenvironment, in order to investigate how they affect tumor growth and invasion in an isotropic and homogeneous medium. The model includes two key variables involved in the proliferation and invasion processes of cancer cells; i.e. the extracellular matrix and the matrix-degradative enzymes concentrations inside the tumor and its surroundings. Additionally, the proposed model focuses on innovative features, such as the separate and independent impact of two vital nutrients, namely oxygen and glucose, in tumor growth, leading to the formation of cell populations with different metabolic profiles. The model implementation takes under consideration the variations of particular factors, such as the local cell proliferation rate, the variable conversion rates of cells from one category to another and the nutrient-dependent thresholds of conversion. All model variables (cell densities, ingredients concentrations) are continuous and described by reaction-diffusion equations.ResultsSeveral simulations were performed using combinations of growth and invasion rates, for different evolution times. The model results were evaluated by medical experts and validated on experimental glioma models available in the literature, revealing high agreement between simulated and experimental results.ConclusionsBased on the experimental validation, as well as the evaluation by clinical experts, the proposed model may provide an essential tool for the patient-specific simulation of different tumor evolution scenarios and reliable prognosis of glioma spatio-temporal progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.