The sensitivity of 127 Phytophthora infestans isolates to flumorph was determined in 2003 and 2004. The isolates originated from two geographical regions and showed similar levels of sensitivity in both years. Baseline sensitivities were distributed as a unimodal curve with EC 50 values for growth of mycelia ranging from 0·1016 to 0·3228 µ g mL, with a mean of 0·1813 ( ± 0·0405) µ g mL. There was no cross-resistance between flumorph and metalaxyl. Laboratory studies were conducted to evaluate the risk of P. infestans developing resistance to flumorph. Mutants resistant to metalaxyl or flumorph were obtained by treating mycelium of wild-type isolates with ultraviolet radiation. Metalaxyl-resistant mutants were obtained with a high frequency and exhibited resistance factor values (EC 50 resistant/EC 50 sensitive phenotypes) of more than 100, while flumorph-resistant mutants were obtained at much lower frequencies and had very small resistance factors (1·5-3·2). There was cross-resistance between flumorph and dimethomorph, but not with azoxystrobin or cymoxanil. Most flumorph-resistant mutants showed decreases in hyphal growth in vitro and in sporulation both in vitro and on detached leaf tissues. These studies suggested that the risk of resistance developing was much lower for flumorph than metalaxyl. However, as P. infestans is a high-risk pathogen, appropriate precautions against resistance development should be taken.
Baseline sensitivity to flumorph, a carboxylic acid amide (CAA) fungicide used to control some oomycetes, was examined using 83 Phytophthora capsici isolates, resulting in a unimodal distribution of effective concentration for 50% inhibition of mycelial growth ranging from 0AE716 to 1AE363, with a mean of 1AE033 ± 0AE129 lg mL )1 . To assess the potential risk of developing flumorph resistance, 13 flumorph-resistant mutants of P. capsici were obtained using ultraviolet irradiation. Most of these mutants and their progeny had high levels of fitness, including mycelial growth, sporulation and virulence. The resistance to flumorph changed slightly, either increasing or decreasing, after 10 transfers on agar media. Cross-resistance was found between flumorph and other CAA fungicides (dimethomorph and iprovalicarb), but not between flumorph and non-CAA fungicides (cymoxanil, metalaxyl, azoxystrobin and cyazofamid). To investigate the genetics of the flumorph resistance, 619 progeny were obtained by self-crossing and sexual hybridization. Segregation of sensitivity to fungicide was measured as a ratio of sensitive (S) to resistant (R) isolates. Segregation of the progeny, from self-crossed isolate PCAS1 (flumorph resistant), was 1:15 in the first generation; and 0:1 or 1:15 in the second generation. In sexual hybridization, segregation of progeny was 0:1 and 1:7 for R · R hybridization; and 1:3 for R · S hybridization. Therefore, the resistance of P. capsici against flumorph was controlled by two dominant genes.
Viable cells of Clavibacter michiganensis subsp. michiganensis (CMM), the causal agent of bacterial canker of tomato, were discriminated from the dead cells by quantitative real-time polymerase chain reaction (PCR), after the bacterial solution was treated with the DNA binding dye ethidium monoazide (EMA). The primers and TaqMan probe, based on the 16S-23S rDNA spacer sequences, were highly specific for CMM at the subspecies level. The detection limit of the direct real-time PCR was 10 3 colony forming units per mL (cfu mL -1 ) in samples and with an apparent sensitivity of 2 cfu of target cells in PCR reaction solution. Application of this method allows for selective quantification of viable cells of CMM and facilitates monitoring the pathogen in tomato seeds.
Plastic-house experiments were conducted over a 2-year period to estimate the effects of successive applications of flumorph or a mixture of flumorph with mancozeb to cucumber plants on selection for flumorph resistance in the downy mildew oomycete, Pseudoperonospora cubensis . Application of flumorph alone favoured the selection of resistant isolates of Ps. cubensis . Resistant populations were detected at a frequency of 2·5% after six successive applications of flumorph alone in a plastic house in 2004. Resistant isolates were also detected (4·8%) after eight successive applications of the mixture of flumorph and mancozeb in 2004, although the mixture gave significantly better disease control than flumorph alone and produced a slight delay in the development of resistance. In a second cucumber crop in the same plastic houses in 2004, the frequency of resistant isolates increased to 100% after three successive applications of flumorph or four of flumorph + mancozeb. Under laboratory conditions, most flumorph-resistant isolates showed high levels of resistance and their levels of pathogenicity and sporulation were as high as that of wild-type isolates. Flumorph showed cross-resistance with dimethomorph and iprovalicarb, but not with azoxystrobin, cyazofamid, cymoxanil or metalaxyl. These studies suggest a high risk for the occurrence of resistance to flumorph in Ps. cubensis in cucumber crops under plastic-house conditions.
growth was observed from surface sterilized tissues. Fungi were isolated, purified by single spore separation process, and subcultured to potato dextrose agar (PDA) plates. Growing on PDA, the surface of the colony was circular, fluffy, and shiny velvety-black, whereas the under surface was dark Prussian blue. Conidiophores were single or fascicled, brown to dark brown, rarely branched, multiseptate, and straight or often geniculate near the apex. Conidia were brown, smooth, fusiform, geniculate or hookshaped, 17.5 to 28.5 X 8.5 to 14.0 |im, and 3-septate, with the third cell from the base larger and darker than the others. Molecular identification was performed by analysis of the rDNA internal transcribed spacer region (ITS1-5.8S-ITS2). The rDNA-ITS region was amplified with primer pair ITSl and ITS4 (5), sequenced, and deposited in GenBank (Accession No. KC462186). The sequence of rDNA-ITS (KC462186) showed 100% identity with Cochliobolus lunatus R.R. Nelson & Haasis (JN943422) after BLAST. Based on the results of morphological and molecular analyses, the fungus isolated from infected leaves was identified as C. lunatus (anamorph: Curvularia Innata (Wakk.) Boedijn) (3). Pathogenicity tests were conducted three times by spraying a conidial suspension (1 x 10ŝ pores/ml) with 0.1% (v/v) Tween 20 on 12 healthy rice plants at late tillering stage. The same number of the healthy rice plants sprayed with sterilized water with 0.1% (v/v) Tween 20 were used as control. All plants were kept at 30°C and 75 to 85% relative humidity (RH) under a 12-h light/dark rotation. About 5 to 7 days after inoculation, green water-soaked streaks began to appear on inoculated plants. From 7 to 14 days after inoculation, the lesions developed quickly and the leaves began to wilt. After 14 days, inoculated plants showed symptoms similar to those originally observed in the field, while control plants (sprayed with sterilized water) remained healthy. C. lunatus was re-isolated from all inoculated plants, and re-identified by the same methods (morphological and molecular methods) as described above, thereby safisfying Koch's postulates, and confirming C. lunatus as the cause of the disease. C. lunatus is a pathogen of a wide range of plants and is common in paddy environments. It was reported as one of the causal agents of black kernel of rice (4) and rice spikelet rot disease (SRD) (1,2). The level of incidence observed in the affected fields suggest that this disease could potentially cause major losses under favorable weather conditions if susceptible cultivars are grown. To our knowledge, this is the first report of C. lunatus causing leaf blight of rice in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.