We present a systematic overview on laser transverse modes with ray-wave duality. We start from the spectrum of eigenfrequencies in ideal spherical cavities to display the critical role of degeneracy for unifying the Hermite–Gaussian eigenmodes and planar geometric modes. We subsequently review the wave representation for the elliptical modes that generally carry the orbital angular momentum. Next, we manifest the fine structures of eigenfrequencies in a spherical cavity with astigmatism to derive the wave-packet representation for Lissajous geometric modes. Finally, the damping effect on the formation of transverse modes is generally reviewed. The present overview is believed to provide important insights into the ray-wave correspondence in mesoscopic optics and laser physics.
The Schmidt decomposition is exploited to study the spatial entanglement of laser transverse modes analogous to quantum Lissajous states. Based on the inverse Fourier transform, the stationary Lissajous state can be analytically derived as a coherent superposition of degenerate Hermite–Gaussian eigenmodes. With the derived stationary state, the Schmidt modes and the participation number
N
can be employed to evaluate the spatial localization and the quantum entanglement. The larger the participation number, the more localized is the stationary coherent state on the Lissajous figure. Moreover, the larger the participation number, the higher is the spatial entanglement.
Orbital angular momentum densities in the astigmatic transformation of Lissajous geometric laser modes are originally and systematically investigated. The quantum theory of the coherent state is exploited to derive an analytical wave representation for the transformed output beams. The derived wave function is further employed to numerically analyze the propagation dependent orbital angular momentum densities. The parts of the negative and positive regions in the orbital angular momentum density are found to rapidly change in the Rayleigh range behind the transformation.
Lissajous structured beams emerging from a spherical laser cavity
subject to the birefringent effect of the laser crystal are
quantitatively analyzed. The analysis reveals that the birefringent
effect leads to numerous frequency degeneracies at the cavity lengths
near an ideal degenerate cavity. By using a diode-pumped
Nd:GdVO4 laser, the emergence of Lissajous structured modes
relevant to frequency degeneracies is precisely quantified by
comparing experimental results with numerical analyses. The present
quantitative analysis provides an important guideline for the
generation of structured transverse modes related to the
ray–wave correspondence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.