Background:Primary Sjögren’s syndrome (pSS) is an autoimmune disease that featured as lymphoplasmacytic infiltration of the exocrine glands leading to sicca symptoms1. However, its underlying molecular mechanisms remain elusive.Objectives:This study aims to identify differentially expressed genes (DEGs) and pathways associated with the progression of pSS using bioinformatics analysis and explore its pathogenesis.Methods:The pSS-associated gene chip data set GSE66795 was obtained from the Gene Expression Omnibus (GEO) database, which included 131 cases of fully-phenotyped pSS patients’ whole blood samples and 29 cases of control samples. DEGs were screened Using R software. Online tool Metascape2 was used to make Gene Ontology (GO) and KEGG pathway enrichment. The PPI network was performed using String database. Hub genes were identified by Cytoscape.Results:A total of 108 DEGs were captured, including 101 up-regulated genes and 7 down-regulated genes. GO enrichment showed that these DEGs were primarily enriched in defense response to virus, response to interferon-gamma, regulation of innate immune response, response to interferon-beta, double-stranded RNA binding, response to interferon-alpha. KEGG pathway enrichment analysis showed these DEGs were principally enriched in Influenza A, RIG-I-like receptor signaling pathway, necroptosis, Staphylococcus aureus infection. Finally, 9 hub genes (STAT1, IRF7, OAS2, GBP1, OAS1, IFIT3, IFIH1, OAS3, DDX60) had highest degree value.Conclusion:The findings identified molecular mechanisms and the key hub genes that may involve in the occurrence and development of pSS.References:[1]Francois H, Mariette X. Renal involvement in primary Sjogren syndrome. Nat Rev Nephrol 2016;12(2):82-93. doi: 10.1038/nrneph.2015.174 [published Online First: 2015/11/17].[2]Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019;10(1):1523. doi: 10.1038/s41467-019-09234-6 [published Online First: 2019/04/05].Acknowledgements:This project was supported by National Science Foundation of China (82001740), Open Fund from the Key Laboratory of Cellular Physiology (Shanxi Medical University) (KLCP2019) and Innovation Plan for Postgraduate Education in Shanxi Province (2020BY078).Disclosure of Interests:None declared
Background and Aims: Oesophageal adenocarcinoma (OAC) is of increasing global concern due to increasing incidence, a lack of effective treatments, and poor prognosis. Therapeutic target discovery and clinical trials have been hindered by the heterogeneity of the disease, lack of driver mutations, and the dominance of large-scale genomic rearrangements. In this work we have characterised three potent and selective hit compounds identified in an innovative high-content phenotypic screening assay. The three hits include two approved drugs; elesclomol and disulfiram, and another small molecule compound, ammonium pyrrolidinedithiocarbamate. We uncover their mechanism of action, discover a targetable vulnerability, and gain insight into drug sensitivity for biomarker-based clinical trials in OAC. Methods: Elesclomol, disulfiram, and ammonium pyrrolidinedithiocarbamate were systematically characterised across panels of oesophageal cell lines and patient-derived organoids. Drug treated oesophageal cell lines were morphologically profiled using a high-content, imaging platform. Compounds were assessed for efficacy across patient-derived organoids. Metabolomics and transcriptomics were assessed for the identification of oesophageal-cancer specific drug mechanisms and patient stratification hypotheses. Results: High-content profiling revealed that all three compounds were highly selective for OAC over tissue-matched controls. Comparison of gene expression and morphological signatures unveiled a unified mechanism of action involving the accumulation of copper selectively in cancer cells, leading to dysregulation of proteostasis and cancer cell death. Basal omic analyses revealed proteasome and metabolic markers of drug sensitivity, forming the basis for biomarker-based clinical trials in OAC. Conclusions: Integrated analysis of high-content imaging, transcriptomic and metabolomic data has revealed a new therapeutic mechanism for the treatment of OAC and represents an alternative target-agnostic drug discovery strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.