The synaptonemal complex (SC) is the large, conserved, proteinaceous scaffold that assembles between and holds together homologous chromosomes in meiotic prophase. Knowledge of the native structure of this complex is needed to evaluate how the SC carries out its functions. Traditional electron microscopy and superresolution light microscopy have revealed that in many organisms, the SC has a ladder-like structure: two rail-like lateral elements are bridged by a set of rung-like transverse filaments. The transverse filaments are connected along their centers by a central element. To determine the 3-D architecture of the SC in situ, we studied frozen-hydrated meiotic yeast cell cryosections by Volta phase-contrast electron cryotomography and subtomogram analysis. We find the SC is built from triplehelical filaments that pack into dense polycrystalline bundles. These structures are also abundant in the polycomplexes of pachytene-arrested cells. Dissolution by 1,6hexanediol treatment suggests that these triple-helical filaments belong to the central region of the SCs. Subtomogram averaging revealed that the SC's triple-helical filaments are up to 12-nm thick and have a 5-nm rise and 130-nm pitch. Single triplehelices and polymers thinner than the triple helix, such as single or double strands, were not detected, consistent with the strong self-oligomerization properties of SC proteins. The dense packing of SC subunits supports the notion that the SC's mechanical properties help coordinate the rapid end-to-end communication across synapsed chromosomes.
In meiosis, cells undergo two sequential rounds of cell division, termed meiosis I and meiosis II. Textbook models of the meiosis I substage called pachytene show that nuclei have conspicuous 100-nm-wide, ladder-like synaptonemal complexes and ordered chromatin loops. It remains unknown if these cells have any other large, meiosis-related intranuclear structures. Here we present cryo-ET analysis of frozen-hydrated budding yeast cells before, during, and after pachytene. We found no cryo-ET densities that resemble dense ladder-like structures or ordered chromatin loops. Instead, we found large numbers of 12-nm-wide triple-helices that pack into ordered bundles. These structures, herein called meiotic triple helices (MTHs), are present in meiotic cells, but not in interphase cells. MTHs are enriched in the nucleus but not enriched in the cytoplasm. Bundles of MTHs form at the same timeframe as synaptonemal complexes (SCs) in wild-type cells and in mutant cells that are unable to form SCs. These results suggest that in yeast, SCs coexist with previously unreported large, ordered assemblies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.