The paper looks at the use of blade element-momentum theory for predicting the torque and thrust on a marine current turbine and the results of wave tank tests using a 400 mm-diameter rotor model. To include the effects of waves, linear wave theory particle velocities and accelerations were integrated into the mathematical model. Comparison with test data shows a good agreement which implies that the theory can be effective in analysing the wave-current interactions in marine current turbines. The paper also carried out parametric studies into related parameters, which include wave height, wave frequency, and tip-speed ratio. The interaction of waves with the current may increase or decrease the torque and hence power output of the turbine. The paper also explains the selection and manufacture of the rotor and the experimental setup.
The influence of waves on the dynamic properties of bending moments at the root of blades of tidal stream vertical-axis rotors is reported. Blade element-momentum theory for wind turbines is combined with linear wave theory and used to analyze this influence. Experiments were carried out with a 350 mm diameter rotor to validate the simulation and the comparison shows the ability of the theoretical approach to predict the blade root bending moments. It can be concluded that, in steep waves, linear theory underestimates the dynamic behaviour of bending moments. However, in long waves, linear theory works well. Bending moments at roots of rotor blades fluctuate with significant amplitudes (as much as 50 per cent of mean value for out-of-plane bending moment and 100 per cent of mean value for in-plane bending moment), which will be important for design of tidal stream rotors
Breakwaters obviously need to fulfill their function (protecting sensitive structures or cargo) while at the same time remaining intact and imposing manageable loads onto supporting structure. It goes without saying that such breakwaters should be cost effective, so that complex designs with extensive welding may not be preferable. In this paper the authors discuss green water loading on breakwaters for trading vessels like container ships which have forward speed and FPSOs which have zero speed. Different generic designs of V shape, vane type, double skin with and without holes, and forward sloping forecastle (whaleback deck) breakwaters applied to trading vessels are discussed. Guidelines for modeling green water horizontal loading on breakwaters of FPSOs and trading vessels using computational fluid dynamics (CFD) techniques are provided. The paper will also include a review of breakwater design criteria in rules and regulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.