Low-dielectric constant (low-k) material is critical for advanced FinFET technology parasitic capacitance reduction to enable lowpower and high-performance applications. Silicon Oxycarbonnitride (SiOCN) is one of the most promising low-k materials for FinFET gate sidewall spacer. The k value of SiOCN can be controlled in the range of 4.1-5.2 by modifying the chemical contents during the deposition process. However, the integration of SiOCN with k value lower than 5.2 for advanced FinFET technology faces substantial challenges associated with the material damage from subsequent manufacturing processes. Here, the authors demonstrate a hybrid low-k spacer scheme on a fully integrated 7 nm FinFET technology platform, in which SiOCN with k value of 4.5 was successfully integrated along the sidewalls of the gate electrode as spacer while retaining the structural integrity and dielectric properties. Device characterisation on the hybrid low-k spacer scheme (k = 4.5) demonstrated 12/11% reduction in P/NFET overlap capacitance (C OV) and 3% reduction in ring oscillator effective capacitance (C EFF) in comparison to the baseline reference using SiOCN with k value of 5.2 as spacer. Furthermore, reliability characterisation confirmed the dielectric breakdown voltage (V BD) and leakage current (I LKG) of the hybrid low-k spacer (k = 4.5) were comparable to the baseline reference (k = 5.2), meeting the technology requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.