Motile metal−organic frameworks (MOFs) are potential candidates to serve as small‐scale robotic platforms for applications in environmental remediation, targeted drug delivery, or nanosurgery. Here, magnetic helical microstructures coated with a kind of zinc‐based MOF, zeolitic imidazole framework‐8 (ZIF‐8), with biocompatibility characteristics and pH‐responsive features, are successfully fabricated. Moreover, it is shown that this highly integrated multifunctional device can swim along predesigned tracks under the control of weak rotational magnetic fields. The proposed systems can achieve single‐cell targeting in a cell culture media and a controlled delivery of cargo payloads inside a complex microfluidic channel network. This new approach toward the fabrication of integrated multifunctional systems will open new avenues in soft microrobotics beyond current applications.
Nanoparticles (NPs) have emerged as an advantageous drug delivery platform for the treatment of various ailments including cancer and cardiovascular and inflammatory diseases. However, their efficacy in shuttling materials to diseased tissue is hampered by a number of physiological barriers. One hurdle is transport out of the blood vessels, compounded by difficulties in subsequent penetration into the target tissue. Here, we report the use of two distinct micropropellers powered by rotating magnetic fields to increase diffusion-limited NP transport by enhancing local fluid convection. In the first approach, we used a single synthetic magnetic microrobot called an artificial bacterial flagellum (ABF), and in the second approach, we used swarms of magnetotactic bacteria (MTB) to create a directable “living ferrofluid” by exploiting ferrohydrodynamics. Both approaches enhance NP transport in a microfluidic model of blood extravasation and tissue penetration that consists of microchannels bordered by a collagen matrix.
16q24 is frequently deleted in multiple tumors including cancers of nasopharynx, esophagus, breast, prostate and liver. By array comparative genomic hybridization (aCGH), we refined a 16q24 hemizygous deletion in nasopharyngeal carcinoma (NPC) cell lines. Semi-quantitative RT-PCR analysis revealed interferon regulatory factor 8 (IRF8) as the only downregulated gene within this deletion. IRF8 belongs to a family of interferon (IFN) regulatory factors that modulate various important physiologic processes including host defense, cell growth and differentiation and immune regulation. In contrast to the broad expression of IRF8 in normal adult and fetal tissues, transcriptional silencing and promoter methylation of IRF8 were frequently detected in multiple carcinoma (except for hepatocellular) cell lines (100% in NPC, 88% in esophageal and 18-78% in other carcinoma cell lines) and in a large collection of primary carcinomas (78% in NPC, 36-71% in other carcinomas). Methylation of the IRF8 promoter led to the disruption of its response to IFN-c stimulation. Pharmacological and genetic demethylation could restore IRF8 expression, indicating a direct epigenetic mechanism. Ectopic expression of IRF8 in tumor cells lacking its expression strongly inhibited their clonogenicity, confirming its tumor suppressor function. Thus, IRF8 was identified as a functional tumor suppressor, which is frequently silenced by epigenetic mechanism in multiple carcinomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.