It is now generally accepted that ADH-induced increase in water permeability in responsive epithelia is associated with the insertion of specific structures in the apical membrane of epithelial cells. Up to now, these structures have only been recognized in freeze-fractured preparations and their chemical nature is still unknown. In this study, we used the label-fracture method (Pinto da Silva and Kan, J. Cell Biol., 99, 1156-1161, 1984) to investigate the distribution of wheat germ agglutinin (WGA) on the luminal plasma membrane of freeze-fractured frog urinary bladder epithelial cells. With label-fracture, the cytochemical markers are seen superimposed with the conventional high resolution image of the E face. Label-fracture of tissue treated for 15 min with WGA and subsequently labeled with colloidal gold coated with ovomucoid showed uniform distribution of gold particles along the exoplasmic fracture face. Stereomicrographs show that the gold label is under the fracture face as it is attached to the outer surface of the membrane. Preincubation of the bladder with WGA for 3 hr induced a segregation of the intramembranous particles of the apical plasma membrane. In this condition, we observed a co-distribution of WGA-gold complexes with the segregated particles on the E face. This indicates that WGA-binding sites are located on glycoproteins which probably comprise the large intramembranous particles dispersed on the exoplasmic faces of freeze-fractured luminal membranes. In contrast, the numerous small intramembrane particles observed on P faces remained evenly distributed even after exposure to WGA and are, therefore, unrelated to WGA receptor sites. After WGA treatment, ADH still induced the formation of aggregates inside the smooth domains. A few WGA-binding sites appeared to be associated to these aggregates.
We propose here the use of freeze-fracture to gain access and to label in vitro glomerular components and locate WGA receptors and anionic sites. Tissues are frozen, fractured under liquid nitrogen, and thawed. Freeze-fracture rendered all glomerular structures directly accessible to the reagents. This made possible study of the nature and topology of cationized ferritin and WGA binding sites. WGA-gold complexes were observed over plasma membranes of podocytes and of endothelial and mesangial cells. Labeling of podocytes and endothelial cells was similar in the mesangial area and in the peripheral part of the capillary loop. Cross-fractures of extracellular matrices showed that WGA bound uniformly to the glomerular basement membrane (GBM) as well as to mesangial matrix. In fractured specimens treated with neuraminidase, WGA was no longer observed over podocytes but it consistently labeled the surface of endothelial and mesangial cells. Whereas in GBM cross-sections WGA binding was greatly reduced or even abolished, it remained unmodified in the mesangium. This shows that only NeuNAc (sialic acid) might account for the binding of WGA to podocytes, whereas GlcNAcs appear to be the main WGA binding sites on endothelial and mesangial cells and in the mesangial matrix. Both NeuNAc and GLcNAc residues are probably associated in GBM. With cationized ferritin (pI 8.3) at pH 7.4, intense, continuous labeling was seen all over the different plasma membranes, denser in podocytes than in endothelial cells. CF was also observed in cross-fractured profiles of extracellular matrices and never appeared agglutinated in discrete sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.