All approaches to optimal experiment design for control have so far focused on deriving an input signal (or input signal spectrum) that minimizes some control-oriented measure of plant/model mismatch between the nominal closed loop system and the actual closed loop system, typically under a constraint on the total input power. In practical terms, this amounts to finding the (constrained) input signal that minimizes a measure of a control-oriented model uncertainty set. Here we address the experiment design problem from a "dual" point of view and in a closed-loop setting: given a maximum allowable controloriented model uncertainty measure compatible with our robust control specifications, what is the cheapest identification experiment that will give us an uncertainty set that is within the required bounds? The identification cost can be measured by either the experiment time, the performance degradation during experimentation due to the added excitation signal, or a combination of both. Our results are presented for the situation where the control objective is disturbance rejection only.
International audienceThis paper addresses the problem of obtaining an estimate of a particular module of interest that is embedded in a dynamic network with known interconnection structure. In this paper it is shown that there is considerable freedom as to which variables can be included as inputs to the predictor, while still obtaining consistent estimates of the particular module of interest. This freedom is encoded into sufficient conditions on the set of predictor inputs that allow for consistent identification of the module. The conditions can be used to design a sensor placement scheme, or to determine whether it is possible to obtain consistent estimates while refraining from measuring particular variables in the network. As identification methods the Direct and Two Stage Prediction-Error methods are considered. Algorithms are presented for checking the conditions using tools from graph theory
Abstract-In prediction error identification, the information matrix plays a central role. Specifically, when the system is in the model set, the covariance matrix of the parameter estimates converges asymptotically, up to a scaling factor, to the inverse of the information matrix. The existence of a finite covariance matrix thus depends on the positive definiteness of the information matrix, and the rate of convergence of the parameter estimate depends on its "size". The information matrix is also the key tool in the solution of optimal experiment design procedures, which have become a focus of recent attention. Introducing a geometric framework, we provide a complete analysis, for arbitrary model structures, of the minimum degree of richness required to guarantee the nonsingularity of the information matrix. We then particularize these results to all commonly used model structures, both in open loop and in closed loop. In a closed-loop setup, our results provide an unexpected and precisely quantifiable trade-off between controller degree and required degree of external excitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.