The concept of nanoscale reinforcement provides opportunity for synthesis of new polymer materials with unique properties. Montmorilonite (MMT) was derived from bentonite, purified, activated by sodium ions and mixed with reacting unsaturated polyester (UP). X‐ray and transmission electron microscopy data were in support of the formation of a partially delaminated nanocomposite material. At an MMT content of only 1.5 vol%, the fracture energy, GQ, of the nanocomposite was doubled, 138 J/m2 as compared with 70 J/m2 for the pure UP.
High performance epoxy‐layered silicate nanocomposites based on tetra‐glycidyl4,4'‐diamino‐dipheny1 methane (TGDDM) resin cured with 4,4'‐diaminodipheny1 sulfone (DDS) have been successfully synthesized. Fluorohectorites modified by means of interlayer cation exchange of sodium cations for protonated dihydro‐imidazolines and octadecylamine were used. Fluorohectorite exchanged with 1‐methy12‐norsteary1‐3‐stearinoacid‐amidoethy1‐dihydro‐imidazolinium ions was immiscible with the epoxy matrix. In contrast, fluorohectorites exchanged with hydroxyethy1‐dihydro‐imidazolinium (HEODI) and riciny1‐dihydro‐imidazolinium ions (RDI) favored the formation of a nanocomposite structure. This is most likely due to the presence of ‐OH groups in their molecular structure, which has a catalytic effect on the polymerization occurring between the silicate layers. The diffusion of epoxy and curing agent molecules between the silicate layers is also promoted. Microscopy observations revealed that the dispersion of the silicate aggregates on a microscale was proportional to the degree of separation of the silicate layers on a nanoscale. Decreased apparent glass transition temperature was observed in all the nanocomposites. Finally, mechanical property studies showed that epoxy‐layered silicate nanocomposite formation could simultaneously improve fracture toughness and Young's modulus, without adversely affecting tensile strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.