Transposon-mediated transformation was used to produce Anopheles
stephensi that express single-chain antibodies (scFvs) designed to
target the human malaria parasite, Plasmodium falciparum. The
scFvs, m1C3, m4B7, and m2A10, are derived from mouse monoclonal antibodies that
inhibit either ookinete invasion of the midgut or sporozoite invasion of
salivary glands. The scFvs that target the parasite surface, m4B7 and m2A10,
were fused to an Anopheles gambiae antimicrobial peptide,
Cecropin A. Previously-characterized Anopheles cis-acting DNA
regulatory elements were included in the transgenes to coordinate scFv
production with parasite development. Gene amplification and immunoblot analyses
showed promoter-specific increases in transgene expression in blood-fed females.
Transgenic mosquito lines expressing each of the scFv genes had significantly
lower infection levels than controls when challenged with P.
falciparum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.