Rendering participating media is important for a number of domains, ranging from commercial applications (entertainment, virtual reality) to simulation systems (driving, flying and space simulators) and safety analyses (driving conditions, sign visibility). This article surveys global illumination algorithms for environments including participating media. It reviews both appearance-based and physically-based media methods, including the single scattering and the more general multiple-scattering techniques. The objective of the survey is the characterization of all these methods: Identification of their base techniques, assumptions, limitations and range of utilization. We conclude with some reflections about the suitability of the methods depending on the specific application involved, and possible future research lines.
Inverse rendering problems usually represent extremely complex and costly processes, but their importance in many research areas is well known. In particular, they are of extreme importance in lighting engineering, where potentially costly mistakes usually make it unfeasible to test design decisions on a model. In this survey we present the main ideas behind these kinds of problems, characterize them, and summarize work developed in the area, revealing problems that remain unsolved and possible areas of further research.
ACM CSS: I.3.6 Computer Graphics Methodology and Techniques I.3.7 Computer Graphics—Three‐Dimensional Graphics and Realism I.4.1 Image Processing and Computer Vision Digitization and Image Capture I.4.7 Image Processing and Computer Vision Feature Measurement I.4.8 Image Processing and Computer Vision Scene Analysis
Inverse surface design problems from light transport behavior specification usually represent extremely complex and costly processes, but their importance is well known. In particular, they are very interesting for lighting and luminaire design, in which it is usually difficult to test design decisions on a physical model in order to avoid costly mistakes. In this survey, we present the main ideas behind these kinds of problems, characterize them, and summarize existing work in the area, revealing problems that remain open and possible areas of further research.
Individually visible scratches, also called isolated scratches, are very common in real world surfaces. Although their microgeometry is not visible, they are individually perceptible by the human eye, lying into a representation scale between BRDF and texture. In order to simulate this kind of scratches in synthetic images we need to know their position over the surface (texture scale), so we can determine where to use the specific scratch BRDF instead of the ordinary surface BRDF. Computing the BRDF of a scratch is difficult because it depends on the scratch's invisible microgeometry. In this paper, we propose a new physically based model to derive this microgeometry by simulating the formation process of scratches. We allow specifying intuitively the parameters involved in the process such as the scratching tool, the penetration forces, and the material properties of the object. From these parameters, we derive the microgeometries of the scratches by taking into account the real behaviour of the process. This behaviour has been determined by analysing existing models in the field of materials engineering and some "scratch tests" that we performed on metals. Our method has the advantages of easily simulating scratches with a wide range of microgeometries and taking into account the variability of their microgeometry along the scratch path. Another contribution is related to the location of the scratches over the surface. Instead of using an image of the paths as in previous work, we present a new representation based on curves defining the paths. This offers an independence on the image resolution or the distance from the observer and accurately provides the scratch direction in order to compute scratch BRDFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.