Biodegradable, spectrally tunable plasmon resonant nanocapsules are created via the deposition of gold onto the surface of 100 nm diameter thermosensitive liposomes. These nanocapsules demonstrate selective release of encapsulated contents upon illumination with light of a wavelength matching their distinct resonance bands, which correspond to 760 and 1210 nm in this study. Spectrally selective release is accomplished through the use of multiple, low intensity laser pulses delivered over a period of less than four minutes, ensuring that illumination affects only the gold-coated liposomes and avoids heating the surrounding media. The result of this illumination scheme for selective release using multiple wavelengths of light is a biologically safe mechanism for realizing drug delivery, microfluidic, and sensor applications.
Biodegradable, spectrally tunable plasmon resonant nanocapsules are created via the deposition of gold onto the surface of 100 nm diameter thermosensitive liposomes. These nanocapsules exhibit selective release of encapsulated contents upon illumination with light of a wavelength matching their distinct resonance bands. In this study, 760 and 1210 nm laser illumination elicits complete release from gold‐coated liposomes with a corresponding resonance, while causing minimal release from liposomes with an unmatching resonance. Spectrally selective release is accomplished through the use of multiple, low‐intensity laser pulses delivered over a period of minutes, ensuring that illumination affects the gold‐coated liposomes without heating the surrounding media. The use of pulsed illumination to achieve spectral selectivity is validated experimentally and through modeling of the heat equation. The result of this illumination scheme for selective release using multiple wavelengths of light is a biologically safe mechanism for realizing drug delivery, microfluidic, and sensor applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.