Successful integration of diagnostic and therapeutic actions at the level of individual cells requires new materials that combine biological compatibility with functional versatility. This review focuses on the development of liposome-based functional materials, where payload release is activated by light. Methods of sensitizing liposomes to light have progressed from the use of organic molecular moieties to the use of metallic plasmon resonant structures. This development has facilitated application of near infrared light for activation, which is preferred for its deep penetration and low phototoxicity in biological tissues. Presented mechanisms of light-activated liposomal content release enable precise in vitro manipulation of minute amounts of reagents, but their use in clinical diagnostic and therapeutic applications will require demonstration of safety and efficacy.
Biodegradable, spectrally tunable plasmon resonant nanocapsules are created via the deposition of gold onto the surface of 100 nm diameter thermosensitive liposomes. These nanocapsules demonstrate selective release of encapsulated contents upon illumination with light of a wavelength matching their distinct resonance bands, which correspond to 760 and 1210 nm in this study. Spectrally selective release is accomplished through the use of multiple, low intensity laser pulses delivered over a period of less than four minutes, ensuring that illumination affects only the gold-coated liposomes and avoids heating the surrounding media. The result of this illumination scheme for selective release using multiple wavelengths of light is a biologically safe mechanism for realizing drug delivery, microfluidic, and sensor applications.
Technological limitations have prevented the interrogation and manipulation of cellular activity in response to bioactive molecules within model and living systems that is required for the development of diagnostic and treatment modalities for diseases, such as cancer. In this work, we demonstrate that gold-coated liposomes are capable of encapsulation and on-demand release of signaling molecules with a spatial and temporal resolution leading to activation of individual cells. As a model system, we used cells modified to overexpress a certain G-protein coupled receptor, the CCK2 receptor, and achieved its activation in a single cell via the localized release of its agonist. This content release was triggered by illumination of the liposomes at wavelengths corresponding to the plasmon resonance of the gold coating. The use of plasmon resonant liposomes may enable on-demand release of a broad range of molecules using biologically safe near infrared light and without molecule chemical modification. In combination with the spectral tunability of plasmon resonant coating, this technology may allow for multiplexed interrogation of complex and diverse signaling pathways in model or living tissues with unprecedented spatial and temporal control.
Gold-coated liposomes are maneuvered using an optical trap to achieve precise delivery of encapsulated molecular cargo. Movement and payload release from these plasmon resonant nanocapsules are independently controlled using a pulsed trapping beam. This technology enables in vitro delivery of a payload to a selected cell and may be applied to the interrogation of individual cells within their biological microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.