Paraoxonase-1 (PON1) and HDL are tightly associated in plasma, and this is generally assumed to reflect the need for the enzyme to associate with a hydrophobic complex. The association has been examined in coronary cases and agematched controls. Highly significant (P , 0.0001), positive associations were observed between PON1 activities and concentrations and HDL-cholesterol and apolipoprotein A-I (apoA-I) concentrations in cases and controls. Corrected slopes were significantly different in cases (cases vs. controls: arylesterase, r 5 0.19 vs. 0.38, P , 0.02 for apoA-I and r 5 0.15 vs. 0.34, P , 0.02 for HDL-cholesterol) such that if PON1 should influence serum HDL, it would be less effective in coronary cases. When examined as a function of the PON1 gene promoter polymorphism CÀ107T, highly significant differences (P , 0.001) in HDL-cholesterol and apoA-I were observed between genotypes for controls, with high expresser alleles having the highest HDL concentrations. This relationship was lost in cases with coronary disease. The coding region polymorphisms Q192R and L55M of the PON1 gene showed no association with HDL. The promoter polymorphism was an independent determinant of HDL concentrations in multivariate analyses. These data are consistent with an impact of PON1 on plasma concentrations of HDL, with detrimental modifications to the relationship in coronary cases.-Blatter Garin, M-C., X. Moren, and R. W. James. Paraoxonase-1 and serum concentrations of HDL-cholesterol and apoA-I. J. Lipid Res. 2006. 47: 515-520. Supplementary key words atherosclerosis . oxidative stress . low density lipoprotein . high density lipoprotein . apolipoprotein A-I
Anti-apoA-1 IgG positivity and atherosclerosis, as reflected by abnormal ABI, were more prevalent in periodontitis patients than in age- and gender-matched controls. In younger periodontitis patients, anti-apoA-1 IgG was found to be the best predictor of atherosclerosis burden.
Objective-The purpose of this study was to analyze the consequences of HDL oxidation for paraoxonase-1 metabolism and function. Methods and Results-HDL was oxidized with AAPH, copper ions, and hypochlorite. Secretion studies were performed using human paraoxonase-1-transfected cells lines and primary rat hepatocytes. Stability studies were performed with recombinant paraoxonase. Conditioned medium had significantly reduced paraoxonase-1 when Cu or AAPH-oxidized HDL was the acceptor complex (PϽ0.01); reduction was dose-dependent on the degree of oxidation. Oxidized HDL had a reduced capacity to stabilize/improve activity of secreted paraoxonase-1. Reduced secretion could not be attributed to enzyme inactivation by lipoperoxides, reduced binding affinity of HDL, or oxidation of the lipid component alone. Hypochlorite oxidation of HDL did not modify HDL-mediated paraoxonase-1 release, but activity of HDL-associated paraoxonase-1 was particularly sensitive to such treatment. Conclusions-AAPH and copper, but not hypochlorite, oxidation of HDL compromises its ability to promote release of paraoxonase-1 and stabilize enzyme activity. HDL-associated paraoxonase-1 is highly sensitive to hypochlorite. Reducing paraoxonase-1 renders HDL susceptible to oxidation, which may compromise HDL function. It provides a novel example at the HDL level of the detrimental effects of oxidative stress, and underlines the need for further evaluation of the consequences of HDL oxidation.
The subfraction distribution of HDL-associated peptides has implications for their functions and the impact of pathological modifications to lipoprotein metabolism on these functions. We have analyzed the subfraction distribution of paraoxonase-1 (PON1) and the consequences for enzyme activity and stability. HDL subfractions were defined by the presence (LpA-I,A-II) or absence (LpA
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.