BACKGROUND Mineral oils have been widely used in the pest control of several crops. However, their mode of action is poorly understood, especially in the case of their antifungal properties. The possible direct fungicidal activity and the stress‐inducing capability of paraffin oil on grapevine were examined using Vitis vinifera L. cv ‘Kékfrankos’ cuttings and the fungus Erysiphe necator, the causal agent of powdery mildew. RESULTS Our experiments demonstrated that paraffin oil does not have fungicide activity on E. necator, but induces significant stress‐related changes in grapevine physiology. Elevated H2O2 production and the accumulation of the phytohormone salicylic acid were measured. Secondary thickening of the cell wall by lignin deposition and the accumulation of phenolic compounds were also observed. Some enzyme activities related to the detoxification of reactive oxygen species, disease response, and the synthesis of lignin were changed in accordance with the determined changes in cell wall composition and H2O2 levels. CONCLUSION The results suggest that paraffin oil induces stress responses on grapevine leaves through oxidative burst, and this response is systemized by salicylic acid. The accumulation of lignin and water‐soluble phenolics may be directly responsible for the paraffin oil‐induced resistance of grapevine against powdery mildew. © 2021 Society of Chemical Industry.
Application of fungicides have advantages and also some direct or indirect disadvantages, such as imbalance and/or fungicide resistance in microbe population. To avoid these problems the development of alternative, eco-friendly methods like mostly spraying with oils are in the focus nowadays. The investigations of the effects of fungicides on microbiota in some cultivations can give a more complex view to this topic and developmental possibilities. In the present study, our aim was testing of the effects of paraffine oil (as alternative fungicide) on microbial properties (CFU and rate of filamentous fungi and yeasts) of Chardonnay and Kékfrankos leaves and berries. Our results from 2014 showed that the application of paraffine oil as sole spray agent can decrease the presence of saprophytic filamentous fungi on the berries of Chardonnay (susceptible for fungal infections). In the case of Kékfrankos berries opposite properties were observed, which may be the result of the absorption of oil by the thick wax layer of this variety. The oil treatment did not affect the yeast population of Chardonnay and Kékfrankos berries contrary to negative effect of the regular pesticide treatment. The selective fungicide effect of paraffine oil against filamentous fungal population caused the accumulation of yeast cells in the mycobiota of grape berries. The careful use of this yeasts in spontaneous fermentation can improve the aroma profile of wines. The year of 2015 did no prefer the growth of fungi, therefore no interesting properties were detected in the mycobiota of grape varieties. The occurence of the harmful saprophytic filamentous fungi predicted to be increased in mild climate agricultures as the result of the climate change. In summary, the paraffine oils are seem to be promising tools for the eco-friendly control of harmful fungi of grapes.
Fungal disease resistant (PIWI) interspecific grape varieties are playing an important role as an alternative for organic wine production. Organic (bio) wines are demanded by numerous conscious consumers around the globe. They choose this kind of wines predominantly because of the absence of synthetic pesticides, fertilisers and sustainable agriculture. Resistant grape growing moreover results in additional environmental and health benefits. Nero and Bianca are among Hungary's most promising interspecific grape cultivars gaining international interest recently, there are, however, limited vitivinicultural knowledge on them. Our aim was to examine the flavonoid and anthocyanin composition for both interspecific varieties during different harvest times in two consecutive vintages. The date of harvest and vintage played a significant effect on grape and wine quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.