We describe a modified Agrobacterium-mediated method for the efficient transformation of Agaricus bisporus. Salient features of this procedure include cocultivation of Agrobacterium and fruiting body gill tissue and use of a vector with a homologous promoter. This method offers new prospects for the genetic manipulation of this commercially important mushroom species.
A clone for a rat acidic Ca2+-independent phospholipase A2(aiPLA2) was isolated from a cDNA library prepared from rat granular pneumocytes with a probe based on the human aiPLA2 sequence (T. S. Kim, C. S. Sundaresh, S. I. Feinstein, C. Dodia, W. R. Skach, M. K. Jain, T. Nagase, N. Seki, K. Ishikawa, N. Nomura, and A. B. Fisher. J. Biol. Chem. 272: 2542–2550, 1997). In addition, a consensus sequence for mouse aiPLA2 was constructed from several mouse cDNA clones in the GenBank and dbEST databases. Each sequence codes for a 224-amino acid protein with 88% identity of the amino acids among the three species and conservation of a putative lipase motif (GDSWG). Translation of mRNA produced from the rat clone in a wheat germ system resulted in expression of PLA2 activity with properties similar to those of the human enzyme, i.e., acidic pH optimum and Ca2+ independence. The localization of aiPLA2 in rat tissues was studied with the human cDNA probe, polyclonal and monoclonal antibodies, and aiPLA2activity. aiPLA2 is present in the lung as evidenced by high levels of mRNA and protein expression and by enzymatic activity that is inhibited by anti-PLA2 antibody and by the transition state analog 1-hexadecyl-3-trifluoroethylglycero- sn-2-phosphomethanol (MJ33). Immunocytochemistry showed the presence of aiPLA2 in alveolar type II cells, alveolar macrophages, and bronchiolar epithelium. In the brain, heart, liver, kidney, spleen, and intestine, aiPLA2 mRNA content was <50% of that in the lung, immunoreactive protein was not detectable, and enzymatic activity was not inhibited by MJ33 or aiPLA2 antibody. These results show marked enrichment of aiPLA2in the lung compared with the other organs and suggest translational control of aiPLA2 expression.
Resurrection plants, which are the "gifts" of natural evolution, are ideal models for studying the genetic basis of plant desiccation tolerance. Here, we report a high-quality genome assembly of 301 Mb for the diploid spike moss Selaginella tamariscina, a primitive vascular resurrection plant. We predicated 27 761 protein-coding genes from the assembled S. tamariscina genome, 11.38% (2363) of which showed significant expression changes in response to desiccation. Approximately 60.58% of the S. tamariscina genome was annotated as repetitive DNA, which is an almost 2-fold increase of that in the genome of desiccation-sensitive Selaginella moellendorffii. Genomic and transcriptomic analyses highlight the unique evolution and complex regulations of the desiccation response in S. tamariscina, including species-specific expansion of the oleosin and pentatricopeptide repeat gene families, unique genes and pathways for reactive oxygen species generation and scavenging, and enhanced abscisic acid (ABA) biosynthesis and potentially distinct regulation of ABA signaling and response. Comparative analysis of chloroplast genomes of several Selaginella species revealed a unique structural rearrangement and the complete loss of chloroplast NAD(P)H dehydrogenase (NDH) genes in S. tamariscina, suggesting a link between the absence of the NDH complex and desiccation tolerance. Taken together, our comparative genomic and transcriptomic analyses reveal common and species-specific desiccation tolerance strategies in S. tamariscina, providing significant insights into the desiccation tolerance mechanism and the evolution of resurrection plants.
With the ability to manipulate cells temporarily and spatially into three-dimensional (3D) tissue-like construct, 3D bioprinting technology was used in many studies to facilitate the recreation of complex cell niche and/or to better understand the regulation of stem cell proliferation and differentiation by cellular microenvironment factors. Embryonic stem cells (ESCs) have the capacity to differentiate into any specialized cell type of the animal body, generally via the formation of embryoid body (EB), which mimics the early stages of embryogenesis. In this study, extrusion-based 3D bioprinting technology was utilized for biofabricating ESCs into 3D cell-laden construct. The influence of 3D printing parameters on ESC viability, proliferation, maintenance of pluripotency and the rule of EB formation was systematically studied in this work. Results demonstrated that ESCs were successfully printed with hydrogel into 3D macroporous construct. Upon process optimization, about 90% ESCs remained alive after the process of bioprinting and cell-laden construct formation. ESCs continued proliferating into spheroid EBs in the hydrogel construct, while retaining the protein expression and gene expression of pluripotent markers, like octamer binding transcription factor 4, stage specific embryonic antigen 1 and Nanog. In this novel technology, EBs were formed through cell proliferation instead of aggregation, and the quantity of EBs was tuned by the initial cell density in the 3D bioprinting process. This study introduces the 3D bioprinting of ESCs into a 3D cell-laden hydrogel construct for the first time and showed the production of uniform, pluripotent, high-throughput and size-controllable EBs, which indicated strong potential in ESC large scale expansion, stem cell regulation and fabrication of tissue-like structure and drug screening studies.
inhibitor (BBI) genes encode serine protease inhibitors that have repetitive cysteine-rich domains with reactive sites for the trypsin or chymotrypsin family. We have identified seven BBI genes from japonica rice (Oryza sativa subsp. japonica var Teqing). All of the genes identified were found in a single cluster on the southern end of the long arm of rice chromosome 1. Four of the seven BBI genes have two repetitive cysteine-rich domains, whereas one has a truncated domain with only one reactive site. We have also identified three novel BBI genes, each of which possesses three repetitive domains instead of two. In situ hybridization analyses indicated that the accumulation of rice BBI transcripts was differentially regulated in germinating embryos and also in the leaves, roots, and flower organs at later developmental stages. Different members of the rice BBI gene family displayed different expression patterns during rice seed germination, and wounding induced the expression of rice BBI transcripts. The three-domain BBIs had higher expression levels than the two-domain BBIs. It was also found that the mRNA of rice BBI genes was present in abundant amounts in scutellar epithelium and aleurone layer cells. RBBI3-1, one of the three-domain RBBI, exhibited in vitro trypsin-inhibiting activity but no chymotrypsin-inhibiting activity. Overexpression of RBBI2-3 in transgenic rice plants resulted in resistance to the fungal pathogen Pyricularia oryzae, indicating that proteinase inhibitors confer resistance against the fungal pathogen in vivo and that they might play a role in the defense system of the rice plant.Plants have developed defense systems to combat various pathogens throughout their life cycle, from the seed stage until senescence, and it is particularly important that the embryo be kept free from infection. There are several embryonic defense mechanisms, including the production of plant lectins and pathogen-related proteins in response to attacks by pathogens or insects (Swegle et al., 1992;Ye et al., 2001;Guiderdoni et al., 2002). A well-known defense component is Ser protease inhibitors. They are expressed in developing seeds and are thought to play an important role in inhibiting trypsin and chymotrypsin of external origin (Ryan, 1981). Two major Ser protease inhibitors have been studied extensively in plants: Kunitz inhibitors and Bowman-Birk inhibitors (BBIs; Ryan, 1990). BBIs are Cys-rich proteins of about 8 to 16 kD with disulfide bonds and are encoded by a family of related genes. The BBI gene family has been found in both the Fabaceae and the Poaceae. BBIs identified in Fabaceae, such as soybean (Glycine max) and lima bean (Phaseolus lunatus), are 8-kD proteins. They have one BBI domain with two reactive sites for trypsin and the related enzymes, such as chymotrypsin (Birk, 1987). These protease inhibitors are double-headed, with two reactive sites in a single inhibitor molecule. Interestingly, this type of inhibitor displays anticarcinogenic activity (Birk, 1993;Kennedy, 1993).The BBIs found in...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.