Colostrum provides essential nutrients and immunologically active factors that are beneficial to newborns. Our previous work demonstrated that milk contains large amounts of miRNA that is largely stored in milk-derived microvesicles (MVs). In the present study, we found that the MVs from colostrum contain signifi cantly higher levels of several immune-related miRNAs. We hypothesized that the colostrum MVs may transfer the immune-related miRNAs into cells, which contribute to its immune modulatory feature. We isolated colostrum MVs by ultracentrifugation and demonstrated several immune modulation features associated with miRNAs. We also provide evidence that the physical structure of milk-derived MVs is essential for transfer miRNAs and following immune modulation effect. Moreover, we found that colostrum powder-derived MVs also contains higher levels of immune-related miRNAs that display similar immune modulation effects. Taken together, these results show that MV-containing immunerelated miRNAs may be a novel mechanism by which colostrum modulates body immune response.
Background:The mechanism of secreted miRNA promoting angiogenesis is still unclear. Results: Secreted miR-150 from monocyte induce endothelial cell tube formation in vitro and angiogenesis in vivo, and downregulation of miR-150 inhibits angiogenesis caused by diabetes, cancer, and atherosclerosis. Conclusion: Monocyte-derived miR-150 can induce angiogenesis via targeting endothelial cells. Significance: Our study illustrates the new role of a secreted miRNA in angiogenesis.
It has long been known that microRNAs (miRNAs) can regulate target gene expression at the post-transcriptional level. Recent studies, however, have revealed that miRNAs can also be transported from donor cells to recipient cells, in which these RNAs function in a novel manner as ligands of Toll-like receptors. Here, we review the latest findings on these unconventional miRNAs, with special emphasis on their biological significance.
Ebola virus (EBOV), a member of the filovirus family, is an enveloped negative-sense RNA virus that causes lethal infections in humans and primates. Recently, more than 1000 people have been killed by the Ebola virus disease in Africa, yet no specific treatment or diagnostic tests for EBOV are available. In this study, we identified two putative viral microRNA precursors (pre-miRNAs) and three putative mature microRNAs (miRNAs) derived from the EBOV genome. The production of the EBOV miRNAs was further validated in HEK293T cells transfected with a pcDNA6.2-GW/EmGFP-EBOV-pre-miRNA plasmid, indicating that EBOV miRNAs can be produced through the cellular miRNA processing machinery. We also predicted the potential target genes of these EBOV miRNAs and their possible biological functions. Overall, this study reports for the first time that EBOV may produce miRNAs, which could serve as non-invasive biomarkers for the diagnosis and prognosis of EBOV infection and as therapeutic targets for Ebola viral infection treatment. microRNA, Ebola virus, functionCitation:
High-level tissue tumor mutational burden (tTMB) or blood TMB (bTMB) are associated with better response of immunotherapy in non-small cell lung cancer (NSCLC) patients. However, the correlations of single-region tTMB, multi-region tTMB and bTMB remain to be determined. Moreover, whether intratumor heterogeneity (ITH) has impact on TMB should be clarified. We collected multi-region tumor tissues with matched blood from 32 operative NSCLC and evaluated single-region tTMB, multi-region tTMB and bTMB through a 1021-gene panel sequencing. TMB of > 9 mutations/Mb was classified as high. Besides, we used tTMB fold-change to evaluate the influence of the enrolled region number on tTMB. We found both of single-region tTMB and bTMB showed strong correlations with multi-region tTMB, while the former correlated better (Pearson r = 0.94, P = 2E-84; Pearson r = 0.47, P = 0.0067). It showed extremely high specificity (100%) but low sensitivity (43%) when using bTMB to define TMB-high patients, while most false-negative predictions were in early-stage patients. Compared to single region, we found significantly enhanced tTMB fold-change if taking multi-regions for consideration. However, it showed insignificant tTMB fold-change increase if the included regions’ number more than three. Moreover, ITH-high patients had significantly higher tTMB fold-change compared with ITH-low patients (2.32 vs. 1.02, P = 8.879e-05). The conversion rate of tTMB level (tTMB-low to tTMB-high) was numerically higher in ITH-high group than that in ITH-low group (16.67% vs. 3.84%). In summary, single-region tTMB has stronger correlation with multi-region tTMB compared with bTMB. ITH has an impact on tTMB, especially in high-level ITH patients. Electronic supplementary material The online version of this article (10.1186/s40425-019-0581-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.