With the rapid growth in healthcare demand, an emergent, novel technology called wireless body area networks (WBANs) have become promising and have been widely used in the field of human health monitoring. A WBAN can collect human physical parameters through the medical sensors in or around the patient’s body to realize real-time continuous remote monitoring. Compared to other wireless transmission technologies, a WBAN has more stringent technical requirements and challenges in terms of power efficiency, security and privacy, quality of service and other specifications. In this paper, we review the recent WBAN medical applications, existing requirements and challenges and their solutions. We conducted a comprehensive investigation of WBANs, from the sensor technology for the collection to the wireless transmission technology for the transmission process, such as frequency bands, channel models, medium access control (MAC) and networking protocols. Then we reviewed its unique safety and energy consumption issues. In particular, an application-specific integrated circuit (ASIC)-based WBAN scheme is presented to improve its security and privacy and achieve ultra-low energy consumption.
More than 50% of the images captured by optical satellites are covered by clouds, which reduces the available information in the images and seriously affects the subsequent applications of satellite images. Therefore, the identification and segmentation of cloud regions come to be one of the most important problems in current satellite image processing. Due to the complexity and variability of satellite images, especially when the ground is covered with snow, the boundary information of cloud regions is difficult to be accurately identified. The fast and accurate segmentation of cloud regions is a difficult point in the current research. We propose a lightweight convolutional neural network. Firstly, channel attention is used to optimize the effective information in the feature maps as a way to improve the network’s ability to extract semantic information at each scale. Then, we fuse high and low-dimensional feature maps to enhance the network’s ability to obtain small-scale semantic information. In addition, the feature aggregation module automatically adjusts the input multi-level feature weights to highlight the details of different features. Finally, we design the fully connected conditional random field to solve the problem that some noise in the input image and local minima during training is passed to the output layer resulting in the loss of edge features. Experimental results show that the proposed method achieves 0.9695 and 0.8218 for overall accuracy and recall, respectively, which has higher segmentation accuracy with the shortest time consumption compared with other state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.