We report that graphene coatings do not significantly disrupt the intrinsic wetting behaviour of surfaces for which surface-water interactions are dominated by van der Waals forces. Our contact angle measurements indicate that a graphene monolayer is wetting-transparent to copper, gold or silicon, but not glass, for which the wettability is dominated by short-range chemical bonding. With increasing number of graphene layers, the contact angle of water on copper gradually transitions towards the bulk graphite value, which is reached for ~6 graphene layers. Molecular dynamics simulations and theoretical predictions confirm our measurements and indicate that graphene's wetting transparency is related to its extreme thinness. We also show a 30-40% increase in condensation heat transfer on copper, as a result of the ability of the graphene coating to suppress copper oxidation without disrupting the intrinsic wettability of the surface. Such an ability to independently tune the properties of surfaces without disrupting their wetting response could have important implications in the design of conducting, conformal and impermeable surface coatings.
Water flow over carbon nanotubes has been shown to generate an induced voltage in the flow direction due to coupling of ions present in water with free charge carriers in the nanotubes. However, the induced voltages are typically of the order of a few millivolts, too small for significant power generation. Here we perform tests involving water flow with various molarities of hydrochloric acid (HCl) over few-layered graphene and report order of magnitude higher induced voltages for graphene as compared to nanotubes. The power generated by the flow of ∼0.6 M HCl solution at ∼0.01 m/sec was measured to be ∼85 nW for a ∼30 × 16 μm size graphene film, which equates to a power per unit area of ∼175 W/m(2). Molecular dynamics simulations indicate that the power generation is primarily caused by a net drift velocity of adsorbed Cl(-) ions on the continuous graphene film surface.
Previous studies of the interaction of water with graphene-coated surfaces have been limited to flat (smooth) surfaces. Here we created a rough surface by nanopatterning and then draped the surface with a single-layer graphene sheet. We found that the ultrasheer graphene drape prevents the penetration of water into the textured surface thereby drastically reducing the contact angle hysteresis (which is a measure of frictional energy dissipation) and preventing the liquid contact line from getting pinned to the substrate. This has important technological implications since the main obstacle to the motion of liquid drops on rough surfaces is contact angle hysteresis and contact line pinning. Graphene drapes could therefore enable enhanced droplet mobility which is required in a wide range of applications in micro and nanofluidics. Compared to polymer coatings that could fill the cavities between the nano/micropores or significantly alter the roughness profile of the substrate, graphene provides the thinnest (i.e., most sheer) and most conformal drape that is imaginable. Despite its extreme thinness, the graphene drape is mechanically robust, chemically stable, and offers high flexibility and resilience which can enable it to reliably drape arbitrarily complex surface topologies. Graphene drapes may therefore provide a hitherto unavailable ability to tailor the dynamic wettability of surfaces for a variety of applications.
We report a novel physicochemical route to produce highly crystalline nitrogen-doped graphene nanoribbons. The technique consists of an abrupt N(2) gas expansion within the hollow core of nitrogen-doped multiwalled carbon nanotubes (CN(x)-MWNTs) when exposed to a fast thermal shock. The multiwalled nanotube unzipping mechanism is rationalized using molecular dynamics and density functional theory simulations, which highlight the importance of open-ended nanotubes in promoting the efficient introduction of N(2) molecules by capillary action within tubes and surface defects, thus triggering an efficient and atomically smooth unzipping. The so-produced nanoribbons could be few-layered (from graphene bilayer onward) and could exhibit both crystalline zigzag and armchair edges. In contrast to methods developed previously, our technique presents various advantages: (1) the tubes are not heavily oxidized; (2) the method yields sharp atomic edges within the resulting nanoribbons; (3) the technique could be scaled up for the bulk production of crystalline nanoribbons from available MWNT sources; and (4) this route could eventually be used to unzip other types of carbon nanotubes or intercalated layered materials such as BN, MoS(2), WS(2), etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.