Microcystins (MCs) are hepatotoxic heptapeptides identified in cyanobacterial bloom-impacted waters and soils. However, their environmental fate in soils is poorly understood, preventing reliable site assessment. This study aims to clarify the variant-specific adsorption, desorption, and dissipation of MC-LR and MC-RR in agricultural soils. Results revealed that their adsorption isotherms followed the Freundlich model (R 2 ≥ 0.96), exhibiting a higher nonlinear trend and lower adsorption capacity for MC-LR than for MC-RR. The soils had low desorption rates of 8.14−21.06% and 3.06−34.04%, respectively, following a 24 h desorption cycle. Pairwise comparison indicated that soil pH and clay played key roles in MC-LR adsorption and desorption, while organic matter and cation exchange capacity played key roles in those of MC-RR. MC-LR dissipation half-lives in soils were 27.18− 42.52 days, compared with 35.19−43.87 days for MC-RR. Specifically, an appreciable decrease in MC concentration in sterile soils suggested the significant role of abiotic degradation. This study demonstrates that the minor structural changes in MCs might have major effects on their environmental fates in agricultural soil and indicates that the toxic effects of MCs should be of high concern due to high adsorption, low desorption, and slow dissipation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.