As one of the three payloads for the Advanced Space-based Solar Observatory (ASO-S) mission, the Lyman-alpha (Lyα) Solar Telescope (LST) is composed of three instruments: a Solar Corona Imager (SCI), a Lyα Solar Disk Imager (SDI) and a full-disk White-light Solar Telescope (WST). When working in-orbit, LST will simultaneously perform high-resolution imaging observations of all regions from the solar disk to the inner corona up to 2.5 R⊙ (R⊙ stands for the mean solar radius) with a spatial resolution of 4.8″ and 1.2″ for coronal and disk observations, respectively, and a temporal resolution of 30 – 120 s and 1 – 120 s for coronal and disk observations, respectively. The maximum exposure time can be up to 20 s due to precise pointing and image stabilization function. Among the three telescopes of LST, SCI is a dual-waveband coronagraph simultaneously and independently observing the inner corona in the HI Lyα (121.6±10 nm) line and white light (WL) (700±40 nm) wavebands by using a narrowband Lyα beam splitter and has a field of view (FOV) from 1.1 to 2.5 R⊙. The stray-light suppression level can attain <10−6 B⊙ (B⊙ is the mean brightness of the solar disk) at 1.1 R⊙ and ≤5×10−8 B⊙ at 2.5 R⊙. SDI and WST are solar disk imagers working in the Lyα line and 360.0 nm wavebands, respectively, which adopt an off-axis two-mirror reflective structure with an FOV up to 1.2 R⊙, covering the inner coronal edge area and relating to coronal imaging. We present the up-to-date design for the LST payload.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
Mixed infections with Schistosoma japonicum and S. mansoni were carried out in mice. S. japonicum females paired with S. mansoni males developed normally and produced numerous viable eggs; very little sperm was found in the female genital tract. The eggs yielded many miracidia infective to Oncomelania hupensis, the host of S. japonicum. Cercariae arising from miracidia developed into male worms with an electrophoretic pattern of malate dehydrogenase (MDH) corresponding only to the maternal species S. japonicum. S. mansoni females paired with S. japonicum produced few viable eggs; sperm was found in the female genital tract. Miracidia hatched from some of these eggs were infective to Biomphalaria glabrata, the host of S. mansoni. Cercariae arising from miracidia developed into female worms with an electrophoretic pattern of MDH typical of the maternal species S. mansoni. It was concluded that S. japonicum females paired with S. japonicum males reproduce parthenogenetically. Parthenogenesis in schistosomes is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.