We report on the fabrication of silica/zinc oxide/zinc sulfide nanoparticles (SiO 2 /ZnO/ZnS NPs) wrapped with thermoresponsive molecularly imprinted polymers (TMIPs) for photocatalysis (PC) applications. TMIPs were prepared via surface-initiated reversible addition− fragmentation chain transfer (SI-RAFT) polymerization of N-isopropylacrylamide (NIPAm) and ethylene glycol dimethacrylate (EGDMA), rendering the material solution accessible and temperature sensitive. Photodegradation of sulfadiazine (SD) was used as a probe to evaluate the effect of coated TMIPs on the PC performance of SiO 2 /ZnO/ZnS NPs. The results showed that TMIPs made SiO 2 /ZnO/ZnS NPs have an outstanding specific affinity PC activity toward template SD. Modification of SiO 2 /ZnO/ZnS NPs with Ag 2 S resulted in a tunable PC ability of the prepared material. For SI-RAFT conducted in a controlled manner, a thin layer of polymers (∼100 nm) formed around NPs was measured by a transmission electron microscopy (TEM). Also the polymers were characterized by Fourier transform infrared spectrometer and thermogravimetric analysis. Due to the specific binding of imprinted polymers, thermoresponsiveness of poly-NIPAm shells, and tunable PC ability of NPs cores, the obtained material catalyzed the original template SD with an appreciable selectivity over other structurally related antibiotics and the PC ability could be tunable by changing thte environmental temperature or NPs cores.
Due to electrocatalysis of the graphene/gold composite and covalent immobilization of the enzyme with the conducting polymer, the proposed method provides a better sensitivity, selectivity, stability and reproducibility than that of other glucose biosensors reported in literatures. It has been successfully applied to determination of glucose in various serum samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.