The presence of phosphine (PH3) and hydrogen sulfide (H2S) in industrial tail gas results in the difficulty of secondary utilization. Using waste solid as a wet absorbent to purify the H2S and PH3 is an attractive strategy with the achievement of “waste controlled by waste”. In this study, the reaction mechanism of simultaneously removing H2S and PH3 by modified manganese slag slurry was investigated. Through the acid leaching method for raw manganese slag and the solid–liquid separation subsequently, the liquid-phase part has a critical influence on removing H2S and PH3. Furthermore, simulation experiments using metal ions for modified manganese slag slurry were carried out to investigate the effect of varied metal ions on the removal of H2S and PH3. The results showed that Cu2+ and Al3+ have a promoting effect on H2S and PH3 conversion. In addition, the Cu2+ has liquid-phase catalytic oxidation for H2S and PH3 through the conversion of Cu(II) to Cu(I).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.