A quantitative analysis on the environment impact of natural graphite anode material is carried out based on life cycle assessment (LCA) method in this paper. The results show that, the main environment impact categories are human toxicity potential, particulate matter formation potential and marine ecotoxicity potential, which account for 26%, 19% and 15% of total environment impacts, respectively. The processes of production, purification and surface modification cause the strongest impact on the environment, because they consume a large number of electricity. Under the current electricity structure of China, improving the production technology and reducing the energy consumptions of purification and surface modification, are the effective methods of environment impact reduction for LIB anode materials.
The detailed life cycle assessment of heavy-duty truck for highway transport in China is conducted by Centre of National Material Life Cycle Assessment (CNMLCA). The input of energy and output of pollutants emissions are documented as the life cycle inventory (LCI). The life cycle impact assessment (LCIA) results calculated with the CML method show that the hotspot of environmental impacts from transport in China. The environmental benefits from implementations of European emissions standards in China for transport are also analyzed. The analysis shows that the acidification potential (AP) makes the most huge contribution to total environmental impact, up to 33.7%. As the second hotsopt, global warming potential (GWP) takes up 26.83% of total environmental impact. Photochemical oxidant formation potential (POCP) takes up 23.42% of total environmental impact, which is more or less the same comparing with the result of GWP. Eutrophication potential (EP) takes up 15.05% of total environmental impact. The last but not the least environmental impact category - human toxicity potential (HTP), only takes up 0.95% of total environmental impact. If the heavy metal and dioxin emissions are also considered, maybe the results will be changed and the HTP will take more in the whole environmental impact. It can be concluded that if we pay more attention on SO2emissions especially NOx emissions reduction, the acidification and photochemical smog would be relieved a lot and the total environmental impact can be decreased a lot. More punishment on overload may be a good choice to reduce environmental load of heavy truck of highway transport in China.
The environmental loads are made due to the natural resources and fossil fuels use and pollutants emissions by Chinese thermal power industry. To explore the realistic coal-fired power generation and its denitration strategies, the input and output of coal-fired power generation in China were identified and quantified. The scope of this paper is defined in the boundary of coal-fired electricity generation system all over China. The methodology follows the principal of ISO 14040 and ISO 14044. The functional unit is “1 kWh of electricity generated”. The inventory data of Chinese coal-fired power generation in 2009 without denitration technology applications were measured. The output data include the CO, N2O, CH4, CO2, NOx, PM and SO2 emissions. NOx emissions are the major contributor of acidification and photochemical in China. To avoid catastrophic environmental damages, the air pollution especially NOx emissions from coal-fired power plants are advised to be cut. For scenario analysis, in the assumption of 100%of selective non-catalytic reduction (SNCR) technology applications, China still has denitration potential. In the coming several decades, the SNCR technology will be decisive for the Chinese coal-fired power industry to reach deeper NOx emission reductions. However, the reduction agents of ammonia and urea usage bring ammonia slip, and extra natural resource and fossils consumption. The urea use also brings extra CO2 emissions. This limits the applications of SNCR technology to reduce NOx emissions.
LCA method was used to model the life cycle of cement manufacturing with multi-stage combustion and low-NOx Burner technology applied as its low-NOx system. The life cycle is from the coal and raw materials transportation, through the coal and raw meal grinding, to the clinker incineration, and finally the flue gas including NOx to the air atmosphere. The functional unit is 1 tonne clinker. Data for cement produced in MSC and LNB technology is analyzed. The data is collected from the real clinker production situation and the measurement is taken in 12 hours continuously.
LCI study is short for life cycle inventory study. In the situation of more strict regulation limit of 500 mg NOx /m3 a demonstration project to reduce NOx emissions with clinker production capacity of 2000 t/d in Beijing is supported by the 'Five-twelfth' National Science and Technology Support Program of China Science and Technology Department. A selective catalytic reduction denitration (SCR DeNOx) technology is expected to be applied in this project. LCA models the life cycle of cement manufacturing with SCR DeNOx technology applied as its SCR system. The life cycle is from the coal and raw materials transportation, through the coal and raw meal grinding, to the clinker incineration, and finally the flue gas including NOx to the SCR reactor. The functional unit is 1 ton clinker. Data for cement produced in LNB technology as bench mark is analyzed and the SCR scenarios are to show that the SCR reactor can be established because the additional environmental impact is small due to small consumptions of reducing agent and electricity. SCR technology enable the deNOx efficiency much higher with small environmental impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.