This paper presents a hybrid ring feeding dual-polarized patch antenna with high isolation in a wide working band. The proposed antenna consists of a circular radiating patch printed on the upper horizontal substrate, two pairs of Γ shaped strips printed on two vertical substrates, and a hybrid ring feeding network printed on the lower two horizontal substrates. The proposed antenna adopts Γ shape strips coupled feeding structure to achieve a wide operating band. Furthermore, a hybrid ring feeding structure with high isolation in a wide bandwidth, which is firstly proposed, is applied as feeding network. When one port is excited, the feeding network can realize twice the power cancellation. Thus, high ports isolation characteristics can be obtained. A prototype of the proposed antenna is fabricated and measured. Measured results show that the 10 dB reflection coefficient bandwidths of the two ports are both about 38.7%, with port isolation higher than 40 dB through most of the band, and the cross-polarizations are below −24 dB.
This paper presents a 2 × 1 integrated filtering microstrip duplex antenna array with high isolation and same polarization. The antenna consists of two radiating patches fed by two T-shaped probes and a power distributing duplex network (PDDN). The PDDN is composed of two bandstop filters and a 180-degree phase shift power divider. And the PDDN is designed to achieve the functions of power division, frequency selectivity, and port isolation. A Transmission Line (TL) model is adopted to design the PDDN, and the detailed synthesis procedure is presented. For demonstration, the proposed antenna is designed and fabricated. The implemented antenna achieves an average gain of 10 dBi, a cross-polarization ratio of 20 dB, and an isolation of 35 dB within the operation band.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.