Parkinson’s disease (PD) is a surprisingly heterogeneous disorder with symptoms including resting tremor, bradykinesia and rigidity. PD has been associated with abnormal task related brain activation in sensory and motor regions as well as reward related network. Although corticostriatal skeletomotor circuit dysfunction is implicated in the neurobiology of Parkinson’s disease, the functional connectivity within this circuit at the resting state is still unclear for PD. Here we utilized resting state functional magnetic resonance imaging to measure the functional connectivity of striatum and motor cortex in 19 patients with PD and 20 healthy controls. We found that the putamen, but not the caudate, exhibited enhanced connectivity with supplementary motor area (SMA), using either the putamen or the SMA as the “seed region”. Enhanced SMA-amygdala functional connectivity was also found in the PD group, compared with normal controls. Our findings highlight the key role of hyper-connected putamen-SMC circuit in the pathophysiology of PD.
Abstract-Orthogonal space-time block codes provide full diversity, and maximum-likelihood (ML) decoding for orthogonal codes can be realized on a symbol-by-symbol basis. It has been shown that rate-one complex orthogonal codes do not exist for systems with more than two transmit antennas. For a general system with transmit and receive antennas, it is very desirable to design rate-one complex codes with full diversity. In this letter, we provide a systematic method of designing rate-one codes (real or complex) for a general multiple-input multiple-output system. Full diversity of these codes is then achieved by constellation rotation. A generalized, reduced-complexity decoding method for rate-one codes is also provided.
SUMMARYWireless engineers and business planners commonly raise the question on where, when, and how millimeter-wave (mmWave) will be used in 5G and beyond. Since the next generation network is not just a new radio access standard, but also an integration of networks for vertical markets with diverse applications, answers to the question depend on scenarios and use cases to be deployed. This paper gives four 5G mmWave deployment examples and describes in chronological order the scenarios and use cases of their probable deployment, including expected system architectures and hardware prototypes. The first example is a 28 GHz outdoor backhauling for fixed wireless access and moving hotspots, which will be demonstrated at the PyeongChang Winter Olympic Games in 2018. The second deployment example is a 60 GHz unlicensed indoor access system at the Tokyo-Narita airport, which is combined with Mobile Edge Computing (MEC) to enable ultra-high speed content download with low latency. The third example is mmWave mesh network to be used as a micro Radio Access Network (µ-RAN), for cost-effective backhauling of small-cell Base Stations (BSs) in dense urban scenarios. The last example is mmWave based Vehicular-to-Vehicular (V2V) and Vehicular-to-Everything (V2X) communications system, which enables automated driving by exchanging High Definition (HD) dynamic map information between cars and Roadside Units (RSUs). For 5G and beyond, mmWave and MEC will play important roles for a diverse set of applications that require both ultra-high data rate and low latency communications. key words: millimeter wave, MEC, 28GHz, 60GHz, mesh network, V2V/V2X, automated driving, future forecast
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.