A manufacturing process for fabricating ease-off surfaces of a face gear drive that is provided with controllable unloaded meshing performance and local bearing contact is proposed. In order to control the unloaded meshing performance, a predesigned transmission error, a predesigned contact path, and the length of contact ellipse are applied in the redesign of the ease-off surfaces of the pinion and face gear. A method of point contact between the grinding disk and the manufactured pinion is proposed to generate the pinion's ease-off surface, the grinding disk is driven by a series of parabolic motions. Numerical examples are used to illustrate the application of the proposed method, the proposed method is proven to be feasible, and the redesigned face gear is proven to be able reproduce the predesigned unloaded meshing performance simulated by tooth contact analysis (TCA). The influence of misalignment on unloaded meshing performance is also analyzed.
The application of a Gleason Coniflex cutter (plane-cutter) to a modern Phoenix bevel gear machine tool in face gear manufacturing has an advantage of involving a universal cutter or grinder and an available existing machine. It is valuable to research this method for face gear manufacturing. First, the principle of the application of the plane-cutter in face gear manufacturing is presented. Then, the geometry of the cutter is defined, and the model of the face gear generated by this method in abstract is established. Third, a method that uses a predesigned contact path for the synthesis with the motion parameters of the plane-cutter is proposed; controllable transmission errors are considered in this process. Fourth, based on the equivalence principle of the position and direction, the computer numerical control (CNC) motion rules of all spindles of the machine are determined, and the surface generated by the machine is presented. Finally, numerical simulation of an example demonstrates that although the surface generated by the plane-cutter, to a certain extent, deviates from the theoretical surface generated by the traditional method, the surface, in meshing with the standard involute surface of the pinion, presents a good geometric meshing performance based on tooth contact analysis (TCA), except for a shortened contact ellipse.
The conventional tooth surface of a face gear is difficult to manufacture, and the cutter for the face gear cutting is not uniform even though the parameters of the pinion mating with the face gear slightly change. Based on the analysis of the geometry features of the tooth surface, a new developable ruled surface is defined as the tooth flank of the face gear, for which the most important geometry feature is that the flank could be represented by a family of straight lines, hence it could be generated by a straight-edged cutter. The mathematical models of the new ruled tooth surface, the cutter and the generation method are presented, the deviation between the ruled surface and the conventional surface, the correction of the ruled surface to reduce the deviation are investigated through numerical examples. The manufacturing process is simulated by VERICUT software, and the results demonstrate that even when the principle deviation is added to the machined deviation, the absolute deviation is on the micro-scale. The meshing and contact simulation shows that the new surface could obtain good meshing performance when the number of face gear teeth is greater than three times the number of pinion teeth. This research provides a new method for manufacturing face gears.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.