An Ag-graphene layers-coated H-shaped photonic crystal fiber (PCF) surface plasmon resonance (SPR) sensor with a U-shaped grooves open structure for refractive index (RI) sensing is proposed and numerically simulated by the finite element method (FEM). The designed sensor could solve the problems of air-holes material coating and analyte filling in PCF. Two big air-holes in the x-axis produce a birefringence phenomenon leading to the confinement loss and sensitivity of x-polarized light being much stronger than y-polarized. Graphene is deposited on the layer of silver in the grooves; its high surface to volume ratio and rich π conjugation make it a suitable dielectric layer for sensing. The effect of structure parameters such as air-holes size, U-shaped grooves depth, thickness of the silver layer and number of graphene layers on the sensing performance of the proposed sensor are numerical simulated. A large analyte RI range from 1.33 to 1.41 is calculated and the highest wavelength sensitivity is 12,600 nm/RIU. In the linear RI sensing region of 1.33 to 1.36; the average wavelength sensitivity we obtained can reach 2770 nm/RIU with a resolution of 3.61 × 10−5 RIU. This work provides a reference for developing a high-sensitivity; multi-parameter measurement sensor potentially useful for water pollution monitoring and biosensing in the future.
We present and numerically characterize a photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor. By adjusting the air hole sizes of the PCF, the effective refractive index (RI) of core-guided mode can be tuned effectively and the sensor exhibits strong birefringence. Alternate holes coated with graphene-Ag bimetallic layers in the second layer are used as analyte channels, which can avoid adjacent interference and improve the signal to noise ratio (SNR). The graphene's good features can not only solve the problem of silver oxidation but also increase the absorption of molecules. We theoretically analyze the influence of the air hole sizes of the PCF and the thicknesses of graphene layer and Ag layer on the performance of the designed sensor using wavelength and amplitude interrogations. The wavelength sensitivity we obtained is as high as 2520 nm/RIU with the resolution of 3.97 × 10 −5 RIU, which can provide a reference for developing a high-sensitivity, real-time, fast-response, and distributed SPR sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.