BackgroundNonalcoholic fatty liver disease (NAFLD) is a condition characterized by excessive fat accumulation in the form of triglycerides. The incidence of NAFLD and hyperlipidemia, with their associated risks of end-stage liver and cardiovascular diseases, is increasing rapidly. This study aimed to investigate the effects of scutellarin on the experimental NAFLD in high-fat diet fed and chronic stress rats, and its possible mechanism.Material/MethodsSprague-Dawley rats were fed with high-fat diet and subjected to chronic stress for 12 weeks, and administered orally with scutellarin for 4 weeks (n=8), and then blood and livers were harvested for analyzing. Enzyme activity assay, immunofluorescence, Western blot, and quantitative RT-PCR were performed to analyze the factors of the oxidant/antioxidant system and pathway.ResultsAfter the high-fat diet and chronic stress administration for 12 weeks, serum and liver lipid metabolism of treatment groups with the different doses of SCU effectively improved and the degree of oxidative damage reduced. Using Western blot assay and immunofluorescence (IF) staining assay, Nrf2, HO-1, and PI3K, and AKT proteins significantly increased after SCU treatment for 4 weeks (P<0.01). The hepatic mRNA expression of HO-1, NQO1, and Nrf2 in SCU treatment groups was upregulated significantly through quantitative RT-PCR assay (P<0.05). However, compared to the positive control group, no difference was detected in the SCU (100 or 300 mg/kg) groups (P>0.05). These results indicate that SCU protects against NAFLD in rats via attenuation of oxidative stress.ConclusionsThe antioxidant effects of SCU on NAFLD are possibly dependent on PI3K/AKT activation with subsequent Nrf2 nuclear translocation, which increases expression of HO-1 and NQO1. We therefore suggest that breviscapine may be a potentially useful therapeutic strategy for NAFLD and hyperlipidemia.
Abstract. The aim of the present study was to investigate the effects of Ginseng polysaccharides (GPS) on natural killer (NK) cell cytotoxicity in immunosuppressed mice. Cyclophosphamide (Cy) was used to construct an immunosuppressed mouse model. The mice in each group were submitted to gavages with 200 or 400 mg/kg GPS every day for 10 days. Magnetic-activated cell sorting was used to isolate spleen NK cells, and the NK cell cytotoxicity, blood distribution, expression levels of perforin and granzyme, and the mRNA expression levels of interferon (IFN)-γ were detected. Compared with the normal control group, the cytotoxicity and proportion of NK cells in the blood, and the expression levels of perforin, granzyme and IFN-γ mRNA in the Cy model group were significantly reduced (P<0.05). In addition, compared with the Cy model group, the cytotoxicity and proportion of NK cells in the whole blood, and the expression levels of perforin and granzyme in the NK cells in the Cy + low-dose GPS and Cy + high-dose GPS groups were significantly increased (P<0.05). However, the mRNA expression levels of IFN-γ in the NK cells did not significantly change (P>0.05). Compared with the normal control group, the cytotoxicity and proportion of NK cells in the whole blood, and the expression levels of perforin in the Cy + low-dose GPS and the Cy + high-dose GPS groups were significantly lower (P<0.05).However, the expression levels of granzyme in the NK cells was not significantly different, as compared with the normal control group (P>0.05). These results suggested that GPS promotes NK cell cytotoxicity in immunosuppressed mice by increasing the number of NK cells in the whole blood and upregulating the expression of perforin and granzyme. Thus, the present study investigated the molecular mechanism underlying NK cell activation by GPS, the research showed that GPS have a wide application prospects in the treatment of cancer and immunodeficiency diseases.
Reduction of TNF-α and p38MAPK and increased expression of occludin and ZO-1 in colonic tissue represent a potential mechanism for improved intestinal mucosal tissue repair with grain-sized moxibustion.
Moxibustion repairs damaged colonic mucosa, suppresses serum IL-8, activates serum IL-10 level, and decreases expression of TLR-9 and NF-κB p65 in UC rats.
Allergic rhinitis (AR) is a global health problem that appears in all age groups and affects approximately 15–30% of people. Baicalin has been used for the treatment of various allergic diseases, including AR. However, the metabolic mechanisms of AR and baicalin against AR have not been systematically studied. Here, ovalbumin-sensitized AR rats were used as a model, and animal behaviour, histological analysis, enzyme-linked immunosorbent assay (ELISA) and metabolomics were used to elucidate the mechanism of baicalin for AR. The results indicated that baicalin has a protective effect on AR rats by inhibiting the release of immunoglobulin E (IgE), histamine, interleukin-1 beta (IL-1β), interleukin-4 (IL-4), interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-α). In addition, ovalbumin-induced AR included modulation of arachidonic acid, leukotriene A4 (LTA4), leukotriene B4 (LTB4), α-ketoglutaric acid, phosphatidylcholine PC (20 : 4/0 : 0), PC (16 : 0/0 : 0), citric acid, fumarate, malate, 3-methylhistidine, histamine and other amino acids that are involved in arachidonic acid, histidine metabolism, the TCA cycle and amino acid metabolism. Thus, AR could be alleviated or reversed by baicalin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.