This paper develops a sliding-mode control with an improved nonlinear extended state observer (SMC-INESO) for the rotation system of a hydraulic roofbolter with dead-zones, uncertain gain, and disturbances, with the purpose of improving tracking performance. Firstly, the rotation system is modeled to compensate for dead-zone nonlinearity. Then, we present an improved nonlinear extended state observer to estimate disturbances of the rotation system in real time. Moreover, a proportional-integral-differential sliding-mode surface is introduced and an improved sliding-mode reaching law is designed. Based on this, a sliding-mode control law is developed. In order to eliminate the influence of estimation error and uncertain gain, we design two adaptation laws based on the sliding-mode surface and the estimated states. Finally, the effectiveness of the proposed SMC-INESO is verified through comparative simulation studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.