No abstract
Due to the difficulty in generating the effective descriptors which are robust to occlusion and viewpoint changes, place recognition for 3D point cloud remains an open issue. Unlike most of the existing methods that focus on extracting local, global, and statistical features of raw point clouds, our method aims at the semantic level that can be superior in terms of robustness to environmental changes. Inspired by the perspective of humans, who recognize scenes through identifying semantic objects and capturing their relations, this paper presents a novel semantic graph based approach for place recognition. First, we propose a novel semantic graph representation for the point cloud scenes by reserving the semantic and topological information of the raw point cloud. Thus, place recognition is modeled as a graph matching problem. Then we design a fast and effective graph similarity network to compute the similarity. Exhaustive evaluations on the KITTI dataset show that our approach is robust to the occlusion as well as viewpoint changes and outperforms the state-of-theart methods with a large margin. Our code is available at: https://github.com/kxhit/SG_PR.
Recent works have shown how realistic talking face images can be obtained under the supervision of geometry guidance, e.g., facial landmark or boundary. To alleviate the demand for manual annotations, in this paper, we propose a novel self-supervised hybrid model (DAE-GAN) that learns how to reenact face naturally given large amounts of unlabeled videos. Our approach combines two deforming autoencoders with the latest advances in the conditional generation. On the one hand, we adopt the deforming autoencoder to disentangle identity and pose representations. A strong prior in talking face videos is that each frame can be encoded as two parts: one for video-specific identity and the other for various poses. Inspired by that, we utilize a multi-frame deforming autoencoder to learn a pose-invariant embedded face for each video. Meanwhile, a multi-scale deforming autoencoder is proposed to extract pose-related information for each frame. On the other hand, the conditional generator allows for enhancing fine details and overall reality. It leverages the disentangled features to generate photo-realistic and pose-alike face images. We evaluate our model on VoxCeleb1 and RaFD dataset. Experiment results demonstrate the superior quality of reenacted images and the flexibility of transferring facial movements between identities.
The quantized neural network (QNN) is an efficient approach for network compression and can be widely used in the implementation of FPGAs. This paper proposes a novel learning framework for n-bit QNNs, whose weights are constrained to the power of two. To solve the gradient vanishing problem, we propose a reconstructed gradient function for QNNs in back-propagation algorithm that can directly get the real gradient rather than estimating an approximate gradient of the expected loss. We also propose a novel QNN structure named n-BQ-NN, which uses shift operation to replace the multiply operation and is more suitable for the inference on FPGAs. Furthermore, we also design a shift vector processing element (SVPE) array to replace all 16-bit multiplications with SHIFT operations in convolution operation on FPGAs. We also carry out comparable experiments to evaluate our framework. The experimental results show that the quantized models of ResNet, DenseNet and AlexNet through our learning framework can achieve almost the same accuracies with the original full-precision models. Moreover, when using our learning framework to train our n-BQ-NN from scratch, it can achieve state-of-the-art results compared with typical low-precision QNNs. Experiments on Xilinx ZCU102 platform show that our n-BQ-NN with our SVPE can execute 2.9 times faster than with the vector processing element (VPE) in inference. As the SHIFT operation in our SVPE array will not consume Digital Signal Processings (DSPs) resources on FPGAs, the experiments have shown that the use of SVPE array also reduces average energy consumption to 68.7% of the VPE array with 16-bit. Index Terms-Deep learning, quantized neural network (QNN), deep compression, FPGA
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.