Traffic prediction has drawn increasing attention in AI research field due to the increasing availability of large-scale traffic data and its importance in the real world. For example, an accurate taxi demand prediction can assist taxi companies in pre-allocating taxis. The key challenge of traffic prediction lies in how to model the complex spatial dependencies and temporal dynamics. Although both factors have been considered in modeling, existing works make strong assumptions about spatial dependence and temporal dynamics, i.e., spatial dependence is stationary in time, and temporal dynamics is strictly periodical. However, in practice the spatial dependence could be dynamic (i.e., changing from time to time), and the temporal dynamics could have some perturbation from one period to another period. In this paper, we make two important observations: (1) the spatial dependencies between locations are dynamic; and (2) the temporal dependency follows daily and weekly pattern but it is not strictly periodic for its dynamic temporal shifting. To address these two issues, we propose a novel Spatial-Temporal Dynamic Network (STDN), in which a flow gating mechanism is introduced to learn the dynamic similarity between locations, and a periodically shifted attention mechanism is designed to handle long-term periodic temporal shifting. To the best of our knowledge, this is the first work that tackle both issues in a unified framework. Our experimental results on real-world traffic datasets verify the effectiveness of the proposed method.
Graph Neural Networks (GNNs) are powerful tools in representation learning for graphs. However, recent studies show that GNNs are vulnerable to carefully-crafted perturbations, called adversarial attacks. Adversarial attacks can easily fool GNNs in making predictions for downstream tasks. The vulnerability to adversarial attacks has raised increasing concerns for applying GNNs in safety-critical applications. Therefore, developing robust algorithms to defend adversarial attacks is of great significance. A natural idea to defend adversarial attacks is to clean the perturbed graph. It is evident that real-world graphs share some intrinsic properties. For example, many real-world graphs are low-rank and sparse, and the features of two adjacent nodes tend to be similar. In fact, we find that adversarial attacks are likely to violate these graph properties. Therefore, in this paper, we explore these properties to defend adversarial attacks on graphs. In particular, we propose a general framework Pro-GNN, which can jointly learn a structural graph and a robust graph neural network model from the perturbed graph guided by these properties. Extensive experiments on real-world graphs demonstrate that the proposed framework achieves significantly better performance compared with the state-of-the-art defense methods, even when the graph is heavily perturbed. We release the implementation of Pro-GNN to our DeepRobust repository for adversarial attacks and defenses 1 . The specific experimental settings to reproduce our results can be found in https://github.com/ChandlerBang/Pro-GNN.
Taxi demand prediction is an important building block to enabling intelligent transportation systems in a smart city. An accurate prediction model can help the city pre-allocate resources to meet travel demand and to reduce empty taxis on streets which waste energy and worsen the traffic congestion. With the increasing popularity of taxi requesting services such as Uber and Didi Chuxing (in China), we are able to collect large-scale taxi demand data continuously. How to utilize such big data to improve the demand prediction is an interesting and critical real-world problem. Traditional demand prediction methods mostly rely on time series forecasting techniques, which fail to model the complex non-linear spatial and temporal relations. Recent advances in deep learning have shown superior performance on traditionally challenging tasks such as image classification by learning the complex features and correlations from large-scale data. This breakthrough has inspired researchers to explore deep learning techniques on traffic prediction problems. However, existing methods on traffic prediction have only considered spatial relation (e.g., using CNN) or temporal relation (e.g., using LSTM) independently. We propose a Deep Multi-View Spatial-Temporal Network (DMVST-Net) framework to model both spatial and temporal relations. Specifically, our proposed model consists of three views: temporal view (modeling correlations between future demand values with near time points via LSTM), spatial view (modeling local spatial correlation via local CNN), and semantic view (modeling correlations among regions sharing similar temporal patterns). Experiments on large-scale real taxi demand data demonstrate effectiveness of our approach over state-of-the-art methods.
Graph Neural Networks have achieved immense success for node classification with its power to explore the topological structure in graph data across many domains including social media, Ecommerce, and FinTech. However, recent studies show that GNNs are vulnerable to attacks aimed at adversely impacting their performance, e.g., on the node classification task. Existing studies of adversarial attacks on GNN focus primarily on manipulating the connectivity between existing nodes, a task that requires greater effort on the part of the attacker in real-world applications. In contrast, it is much more expedient on the part of the attacker to inject adversarial nodes, e.g., fake profiles with forged links, into existing graphs so as to reduce the performance of the GNN in classifying existing nodes.Hence, we consider a novel form of node injection poisoning attacks on graph data. We model the key steps of a node injection attack, e.g., establishing links between the injected adversarial nodes and other nodes, choosing the label of an injected node, etc. by a Markov Decision Process. We propose a novel reinforcement learning method for Node Injection Poisoning Attacks (NIPA), to sequentially modify the labels and links of the injected nodes, without changing the connectivity between existing nodes. Specifically, we introduce a hierarchical Q-learning network to manipulate the labels of the adversarial nodes and their links with other nodes in the graph, and design an appropriate reward function to guide the reinforcement learning agent to reduce the node classification performance of GNN.The results of our experiments show that NIPA is consistently more effective than the baseline node injection attack methods for poisoning graph data used to train GNN on several benchmark data sets. We further show that the graphs poisoned by NIPA are statistically similar to the original (clean) graphs, thus enabling the attacks to evade detection.
Spatial-temporal prediction is a fundamental problem for constructing smart city, which is useful for tasks such as traffic control, taxi dispatching, and environment policy making. Due to data collection mechanism, it is common to see data collection with unbalanced spatial distributions. For example, some cities may release taxi data for multiple years while others only release a few days of data; some regions may have constant water quality data monitored by sensors whereas some regions only have a small collection of water samples. In this paper, we tackle the problem of spatialtemporal prediction for the cities with only a short period of data collection. We aim to utilize the long-period data from other cities via transfer learning. Different from previous studies that transfer knowledge from one single source city to a target city, we are the first to leverage information from multiple cities to increase the stability of transfer. Specifically, our proposed model is designed as a spatial-temporal network with a meta-learning paradigm. The meta-learning paradigm learns a well-generalized initialization of the spatial-temporal network, which can be effectively adapted to target cities. In addition, a pattern-based spatial-temporal memory is designed to distill long-term temporal information (i.e., periodicity). We conduct extensive experiments on two tasks: traffic (taxi and bike) prediction and water quality prediction. The experiments demonstrate the effectiveness of our proposed model over several competitive baseline models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.