In recent years, Graph Neural Networks (GNNs), which can naturally integrate node information and topological structure, have been demonstrated to be powerful in learning on graph data. These advantages of GNNs provide great potential to advance social recommendation since data in social recommender systems can be represented as user-user social graph and user-item graph; and learning latent factors of users and items is the key. However, building social recommender systems based on GNNs faces challenges. For example, the user-item graph encodes both interactions and their associated opinions; social relations have heterogeneous strengths; users involve in two graphs (e.g., the useruser social graph and the user-item graph). To address the three aforementioned challenges simultaneously, in this paper, we present a novel graph neural network framework (GraphRec) for social recommendations. In particular, we provide a principled approach to jointly capture interactions and opinions in the user-item graph and propose the framework GraphRec, which coherently models two graphs and heterogeneous strengths. Extensive experiments on two real-world datasets demonstrate the effectiveness of the proposed framework GraphRec. Our code is available at https: //github.com/wenqifan03/GraphRec-WWW19
Graph Neural Networks (GNNs) are powerful tools in representation learning for graphs. However, recent studies show that GNNs are vulnerable to carefully-crafted perturbations, called adversarial attacks. Adversarial attacks can easily fool GNNs in making predictions for downstream tasks. The vulnerability to adversarial attacks has raised increasing concerns for applying GNNs in safety-critical applications. Therefore, developing robust algorithms to defend adversarial attacks is of great significance. A natural idea to defend adversarial attacks is to clean the perturbed graph. It is evident that real-world graphs share some intrinsic properties. For example, many real-world graphs are low-rank and sparse, and the features of two adjacent nodes tend to be similar. In fact, we find that adversarial attacks are likely to violate these graph properties. Therefore, in this paper, we explore these properties to defend adversarial attacks on graphs. In particular, we propose a general framework Pro-GNN, which can jointly learn a structural graph and a robust graph neural network model from the perturbed graph guided by these properties. Extensive experiments on real-world graphs demonstrate that the proposed framework achieves significantly better performance compared with the state-of-the-art defense methods, even when the graph is heavily perturbed. We release the implementation of Pro-GNN to our DeepRobust repository for adversarial attacks and defenses 1 . The specific experimental settings to reproduce our results can be found in https://github.com/ChandlerBang/Pro-GNN.
Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.
Due to the fact much of today's data can be represented as graphs, there has been a demand for generalizing neural network models for graph data. One recent direction that has shown fruitful results, and therefore growing interest, is the usage of graph convolutional neural networks (GCNs). They have been shown to provide a significant improvement on a wide range of tasks in network analysis, one of which being node representation learning. The task of learning low-dimensional node representations has shown to increase performance on a plethora of other tasks from link prediction and node classification, to community detection and visualization. Simultaneously, signed networks (or graphs having both positive and negative links) have become ubiquitous with the growing popularity of social media. However, since previous GCN models have primarily focused on unsigned networks (or graphs consisting of only positive links), it is unclear how they could be applied to signed networks due to the challenges presented by negative links. The primary challenges are based on negative links having not only a different semantic meaning as compared to positive links, but their principles are inherently different and they form complex relations with positive links. Therefore we propose a dedicated and principled effort that utilizes balance theory to correctly aggregate and propagate the information across layers of a signed GCN model. We perform empirical experiments comparing our proposed signed GCN against state-of-the-art baselines for learning node representations in signed networks. More specifically, our experiments are performed on four realworld datasets for the classical link sign prediction problem that is commonly used as the benchmark for signed network embeddings algorithms.
Graph neural networks, which generalize deep neural network models to graph structured data, have attracted increasing attention in recent years. They usually learn node representations by transforming, propagating and aggregating node features and have been proven to improve the performance of many graph related tasks such as node classification and link prediction. To apply graph neural networks for the graph classification task, approaches to generate the graph representation from node representations are demanded. A common way is to globally combine the node representations. However, rich structural information is overlooked. Thus a hierarchical pooling procedure is desired to preserve the graph structure during the graph representation learning. There are some recent works on hierarchically learning graph representation analogous to the pooling step in conventional convolutional neural (CNN) networks. However, the local structural information is still largely neglected during the pooling process. In this paper, we introduce a pooling operator EigenPooling based on graph Fourier transform, which can utilize the node features and local structures during the pooling process. We then design pooling layers based on the pooling operator, which are further combined with traditional GCN convolutional layers to form a graph neural network framework EigenGCN for graph classification. Theoretical analysis is provided to understand EigenPooling from both local and global perspectives. Experimental results of the graph classification task on 6 commonly used benchmarks demonstrate the effectiveness of the proposed framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.