Swertia mussotii is an important medicinal plant that has great economic and medicinal value and is found on the Qinghai Tibetan Plateau. The complete chloroplast (cp) genome of S. mussotii is 153,431 bp in size, with a pair of inverted repeat (IR) regions of 25,761 bp each that separate an large single-copy (LSC) region of 83,567 bp and an a small single-copy (SSC) region of 18,342 bp. The S. mussotii cp genome encodes 84 protein-coding genes, 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. The identity, number, and GC content of S. mussotii cp genes were similar to those in the genomes of other Gentianales species. Via analysis of the repeat structure, 11 forward repeats, eight palindromic repeats, and one reverse repeat were detected in the S. mussotii cp genome. There are 45 SSRs in the S. mussotii cp genome, the majority of which are mononucleotides found in all other Gentianales species. An entire cp genome comparison study of S. mussotii and two other species in Gentianaceae was conducted. The complete cp genome sequence provides intragenic information for the cp genetic engineering of this medicinal plant.
High-throughput sequencing of chloroplast genomes has been used to gain insight into the evolutionary relationships of plant species. In this study, we sequenced the complete chloroplast genomes of four species in the Meconopsis genus: M . racemosa , M . integrifolia (Maxim.) Franch, M . horridula and M . punicea . These plants grow in the wild and are recognized as having important medicinal and ornamental applications. The sequencing results showed that the size of the Meconopsis chloroplast genome ranges from 151864 to 153816 bp. A total of 127 genes comprising 90 protein-coding genes, 37 tRNA genes and 8 rRNA genes were observed in all four chloroplast genomes. Comparative analysis of the four chloroplast genomes revealed five hotspot regions ( matK , rpoC2 , petA , ndhF , and ycf1 ), which could potentially be used as unique molecular markers for species identification. In addition, the ycf1 gene may also be used as an effective molecular marker to distinguish Papaveraceae and determine the evolutionary relationships among plant species in the Papaveraceae family. Futhermore, these four genomes can provide valuable genetic information for other related studies.
The environment of Lake Taihu has changed a great deal in recent decades. Wetland plant restoration is considered an efficient way to keep it healthy. However, restoration efforts are affected by environmental factors which have important influences on wetland plant growth. In order to study the mutual effects of water depth and sediment type on the growth of aquatic plants, the impacts of the two environmental factors on root morphology of the submerged plant Vallisneria natans were investigated in an outdoor pond experiment. Treatments included three levels of water depth (60, 120 and 180 cm) and two sediment types (clay and sandy loam). Results showed that root/leaf mass ratio and root morphological parameters (root diameter, root length, root area, root volume, specific root length and specific root area) of the plant generally decreased with increasing water depth, with reductions of 12.64% in root diameter and 97.40% in root mass in clay and 28.82% in root diameter and 97.98% in root volume in sandy loam. Root/leaf mass ratio in low nutrient sediment (sandy loam) was higher than that in the more nutrient-rich sediment (clay). However, the other four morphological parameters were higher in clay at any water depths. Results of two-way analysis of variance (ANOVA) showed that water depth impacted the biomass allocation and root morphology of V. natans significantly, while sediment type only had significant impact on root/leaf mass ratio and root diameter. The results indicate that a considerable variation in root morphology of the submerged plant V. natans exists in response to water depth and sediment type, and water depth is the key ecological factor affecting root growth of the plant. This study can provide useful information in aquatic plant restoration and management.
Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder characterized by abdominal pain or discomfort. Previous studies have illustrated that the gut microbiota might play a critical role in IBS, but the conclusions of these studies, based on various methods, were almost impossible to compare, and reproducible microorganism signatures were still in question. To cope with this problem, previously published 16S rRNA gene sequencing data from 439 fecal samples, including 253 IBS samples and 186 control samples, were collected and processed with a uniform bioinformatic pipeline. Although we found no significant differences in community structures between IBS and healthy controls at the amplicon sequence variants (ASV) level, machine learning (ML) approaches enabled us to discriminate IBS from healthy controls at genus level. Linear discriminant analysis effect size (LEfSe) analysis was subsequently used to seek out 97 biomarkers across all studies. Then, we quantified the standardized mean difference (SMDs) for all significant genera identified by LEfSe and ML approaches. Pooled results showed that the SMDs of nine genera had statistical significance, in which the abundance of Lachnoclostridium, Dorea, Erysipelatoclostridium, Prevotella 9, and Clostridium sensu stricto 1 in IBS were higher, while the dominant abundance genera of healthy controls were Ruminococcaceae UCG-005, Holdemanella, Coprococcus 2, and Eubacterium coprostanoligenes group. In summary, based on six published studies, this study identified nine new microbiome biomarkers of IBS, which might be a basis for understanding the key gut microbes associated with IBS, and could be used as potential targets for microbiome-based diagnostics and therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.